自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 更换YOLOV5主干,加入全全局上下文注意力机制模块,助力涨点!

然后再回到yolo.py文件中,添加好我们已经修改的yaml文件并且运行,出现如下界面则表示我们已经添加成功了。现在我们已经成功添加了C3GC模块了,添加过程中如遇到问题,可以再评论区交流。我们找到models文件夹中的common.py文件,加入如下模块。接着我们找到models文件夹中的yolo.py文件中的。parse_model函数的如下部分,添加C3GC模块。然后我们找到yolov5.yaml文件并修改里面的参数。

2024-05-09 18:33:20 353

原创 YOLOV5加入BIFPN层,助力涨点!

再回到yolo.py文件中,添加好改好的yaml文件,并且运行,出现如下图所示的界面即表示添加成功了。首先找到models文件夹中的common.py文件,加入BIFPN层模块。现在已经成功添加了BIFPN层了,添加过程中如遇到问题可以评论区交流。然后我们再找到models文件夹中的yolo.py文件中找到。parse_model函数,并在如图下位置添加BIFPN模块。然后找到yolov5n.yaml文件,修改里面的参数。

2024-05-09 17:44:07 366

原创 YOLOv5用ASPP替换原SPPF结构,助力涨点!

然后我们再回到yolo.py文件,添加好我们修改的yaml文件,并且运行,出现如下界面即添加成功了。首先我们在models文件夹中找到common.py文件,加入ASPP模块,如下。现在我们就已经吃成功添加了,如添加过程中遇到问题可以再评论区交流。接着我们再找到yolov5n.yaml文件,修改里面的参数。然后我们找到models文件夹中的yolo.py文件中的。parse_model函数,在图下位置添加ASPP模块。

2024-05-09 17:31:12 508

原创 YOLOV5更换转置卷积,助力涨点!

然后我们再回到yolo.py函数,添加我们改过的yaml文件,并且运行yolo.py文件,如下图所示。由于转置卷积是nn库自带的,所以我们直接找到models文件夹中的yolo.py文件中的。现在我们已经成功把专职卷积模块添加进去了,如添加过程中有问题可以评论区交流。parse_model函数,再在如下图的地方添加转置卷积模块。接着我们找到yolov5n.yaml文件,修改里面的参数。

2024-05-09 17:20:21 245

原创 YOLOV5加入RCS-OSA模块,提升检测速度,助力涨点!

接着我们再回到yolo.py文件,添加好我们修改的yolov5n.yaml文件,并且运行yolo.py文件,出现如下界面即表示此RepVGG和RCSOSA模块已经添加进去了。parse_model函数中的如图下的地方,添加RepVGG和RCSOSA模块。首先我们找到models文件夹中的commmon.py文件,加入。现在已经成功添加了ROS模块,如添加过程中遇到问题可以评论区交流。然后我们找到models文件夹中的yolo.py文件中的。然后我们找到yolov5.yaml文件,修改里面的参数。

2024-05-09 17:10:26 328

原创 YOLOV5替换AKconv,轻量化的同时涨点!

接着我们再回到yolo.py文件,引入我们修改的yaml文件,并且运行,出现如下界面即表示添加成功了。可以看到AKconv已经添加进去了,添加过程中如果遇到问题可以评论区交流。首先我们找到models文件夹中的common.py文件,加入如下模块。parse_model函数并且在如图位置添加AKconv模块。然后我们再models文件夹中找到yolo.py文件中的。然后我们找到yolov5n.yaml,修改其中的参数。

2024-05-09 17:01:48 1466

原创 YOLOV5加入Convnext模块,助力涨点!

修改好过后我们再进入models文件夹中的yolo.py文件,添加好改好的yaml文件,并且运行yolo.py文件,出现如下界面即表示添加成功了。我们找到models文件夹中的common.py文件,添加CNeB模块,如下。添加好过后我们再找到yolov5.yaml文件,修改里面的参数。然后我们再找到models文件夹中的yolo.py文件中的。,如下图所示添加CNeB模块。parse_model函数。

2024-05-09 16:16:21 505

原创 YOLOV5加入FLAttention注意力机制,助力涨点!

接着我们再回到yolo.py文件中,导入修改好的yaml文件,并且运行yolo.py文件,出现如下界面即表示运添加成功了。首先我们还是找到models文件夹中的common.py文件,加入FLAttention模块。FLAttention注意力机制已经成功添加进去了,如添加过程中遇到问题可在评论区交流。然后我们再找到models文件夹中的yolo.py文件,找到里面的。然后 我们再找到yolov5n.yaml文件,修改yaml文件。C3_FLAttention模块。parse_model函数过后。

2024-05-09 16:00:53 224

原创 YOLOV5中加入SE注意力机制,助力涨点!

修改好后我们再回到yolo.py文件中,把修改好的yaml文件加进去,并且运行文件,出现如下界面即表示添加成功了。修改好后我们再进入yolov5.yaml文件,修改里面的参数,修改参数如下。现已经成功吧SE注意力机制添加进去了,添加过程中如遇到问题可以评论区交流。首先我们找到models文件夹中的common.py文件,加入如下模块。然后我们再找到models文件夹中的yolo.py文件中的。,在如下图位置加入SE模块,一共有两个地方。parse_model函数。

2024-05-09 15:51:13 360

原创 YOLOV5中加入SA注意力机制,助力涨点!

parse_model函数,在如下地方添加ShuffleAttention模块。可以看到SA注意力机制已经添加进去了,添加过程中如有问题大家可以评论区交流。首先我们找到models文件夹中的common.py文件,加入SA模块。然后我们找到yolov5.yaml文件,修改yaml文件里面的参数。接着我们找到models文件夹中的yolo.py文件中的。

2024-05-09 15:43:13 449

原创 YOLOV5中加入ECA注意力机制,助力涨点!

然后再回到yolo.py文件,加入改好的yaml文件,并运行,出现如下界面即表示ECA模块已经添加成功了。我们找到models文件夹中的common.py文件,在文件中加入如下模块。接着我们找到yolov5.yaml文件,加入ECA模块,具体如下。现在ECA模块已经添加进去了,添加过程中有问题可以在评论区交流。然后我们找到models文件夹中的yolo.py文件,找到。parse_model函数的如下地方,添加ECA模块。

2024-05-09 15:31:20 509

原创 YOLOV5中加入CA注意力机制,助力涨点!

parse_model函数,在如图两个位置添加相应的模块,首先第一个地方添加CoordAtt模块。然后我们再回到yolo.py文件,更换yaml为改过的yaml文件。首先找到models文件夹中的common.py文件,加入如下模块。这里显示我们已经添加成功了,添加过程中遇到问题咱们评论区交流。再找到models文件夹中的yolo.py文件里的。接着运行yolo.py文件,出现以下界面即添加成功。

2024-05-09 15:22:45 356

原创 YOLOv5加入PSA注意力机制,助力涨点!

可以看到PSA注意力机制已经加入进去了,途中遇到啊问题咱们评论区交流。我们在models文件夹中找到common.py文件,加入如下模块。parse_model函数,在如图下地方添加模块名称。再次打开yolo.py文件,如图添加yaml文件。在models/yolo.py文件中找到。然后我们修改yolov5n.yaml文件。运行yolo.py文件。

2024-05-09 15:12:41 391

原创 YOLOv5加入CBAM注意力机制,实现涨点!

这里我们讲一下如何在yolov5n文件里面加入CBAM注意力机制,我这里涨点的话一共两种加法,我们先来讲第一种。具体加多少个,加在哪个位置都可以,看大家自己的需求,针对不同数据集效果会不一样,有问题大家可以评论区交流。然后我们来讲第二种方法,加在卷积上,还是先进入common.py文件里面去,加入如下模块。第一种我们加在主干中,我们首先找到models文件夹里面的common.py文件。然后我们找到models文件夹里面的yolo.py文件中的。然后我们打开yolov5n.yaml文件,修改里面的参数。

2024-05-09 15:03:13 653

原创 YOLOV5替换ODconv卷积

在yolo.py中导入ODconv2d模块,如图。并且在yolo.py中吧这里的1改成2。更改yolov5n.yaml文件。可以看到,已经加载成功了。

2024-03-13 10:26:30 487

原创 Get_Map遇到的错误如何改正(pytorch1.11.0)

错误一:File "D:\pycharm-project\bingxiang\yolov5-pytorch-main\yolov5-pytorch-main\utils\utils_map.py", line 609, in get_map fig.canvas.set_window_title('AP ' + class_name) AttributeError: 'FigureCanvasTkAgg' object has no attribute 'set_window_title'错误二:File

2024-02-22 10:45:39 449 1

原创 STM32 实现ADC多通道采集电压数据DMA方式(智能家居系列五)

前面一节,我们讲到用ADC单通道采集电压数据,但是只能够实现一个通道的电压数据采集,现在我们需要多个ADC通道采集不同传感器的数据,就需要开启STM32的ADC多通道数据了,接下来我们放代码。

2024-01-25 15:36:28 1782

原创 STM32驱动MQ3酒精浓度测量模块(智能家居系列四)

首先我们先讲解MQ3酒精测量模块的使用方法,下面是我使用的酒精测量模块的图片这个模块的使用如下,D0可以悬空不接,A0接STM32的ADC通道口,这里我接的是PA0口也就是通道0口接好过后我们就可以开始测试代码了。

2024-01-17 15:01:37 2384 5

原创 STM32驱动DHT11实现温湿度测量(智能家居系列三)

这个模块主要是测温湿度的,大概样子如下图所示网上都说DAT口需要上拉一个5k电阻,但是像这种模块的话是不需要大家自行再接一个5k电阻的,因为这都是集成好了的,如果是单独的传感器,那就需要大家自行再接一个5k的电阻了。废话不多说,下面我们直接看stm32端的代码吧。

2024-01-11 15:16:35 1274

原创 STM32用TB6612驱动电机(智能家居系列二)

然后AIN1,AIN2,这两个口是控制正反转的,随便接单片机的I/O口,然后进行初始化就行了,STBY口直接接5V口(STBY是使能,高电平电机才能转,低电平电机是不会转的,所以直接接电压即可),最后A01和A02接电机的两根正负线即可,接电机的正负无所谓,别把单片机接错就行啦!AIN2-----接代码中的PB3口 VCC-----接5V。

2024-01-08 17:13:02 7985 10

原创 STM32与ASRPRO通信(智能家居系列一)

根据官方给出的原理图:根据原理图我们可以看到能够实现串口通信的有PA2,PA3;PB10.PB11;PA9,PA10六个I/O口,我的代码里面呢选择的是PA2和PA3口,也就是USART2(这里呢不建议大家用USART1口,因为32都是用的串口1下载程序,这样子的话调试非常不方便,建议大家能用串口2和串口3尽量用串口2和串口3)。话不多说,接下来我们看代码!uart.c//GPIO端口设置//使能GPIOA时钟//使能USART2时钟//PA.2//复用推挽输出。

2024-01-06 11:39:35 16910 9

原创 Windows环境下配置ORB_SLAM2教程

在讲本篇文章,首先大家一定要关闭掉所有杀毒软件,windows自带的也要关闭如下:链接:https://pan.baidu.com/s/195EHUwiEAO7sU3_Tvdrmig提取码:ctky链接:https://pan.baidu.com/s/1o9XESFGGqJOHror7bwd6dw提取码:jec8。

2023-11-21 11:30:25 1477 9

原创 在windows下运行ORB-SLAM2时用cmake编译DBow2不出现OpenCV选项

现在就能显示opecv文件了。

2023-11-15 20:58:51 362 2

原创 用python脚本对视频进行取帧代码

【代码】用python脚本对视频进行取帧代码。

2023-11-06 10:26:22 519

原创 用STM32C8T6驱动DM542来控制步进电机正反转

驱动分为六个接口,我采用的是共阴极接法,PUL是用来接收脉冲的,DIR是用来控制电机转动的方向,ENA是使能,可以选择不接。要让步进电机转起来,首先接线很重要,我用的是24V电池驱动的,有些问题,建议大家用220转24电源进行供电。这是电机IO口的使能部分,使能PB0 PB1,PB0是PWM脉冲输出口,通过调整PB1来使电机正反转。接下来是对定时器3的初始化使能IO口,使能PB0就可以了,从而输出PWM脉冲,用哪个口使能哪个口。PUL+(接PWM脉冲,这里是我的TIM3,PB0口)

2023-10-29 22:03:35 4659 20

原创 在pytorch环境下解决CUDA out of memory. 的问题

2.pytorch环境问题,首先第一个,如果你的显卡等级较高,比如我的显卡,就不能安装太低的pytorch版本,建议1.8.0以下的版本都不要安装,不然会报显卡与pytorch不匹配的错,安装的时候不要用清华的镜像源,会出现太多问题!num_workers与batch_size的大小,建议先调整num_workers,但是num_workers要尽可能的调大,不然会影响读取图片的速度,再去调整batch_size的大小。安装好对应自己显卡的版本再检查环境问题。运行这段后会使用中科大的镜像源。

2023-10-26 22:35:02 502 1

原创 卸载环境里所有安装的pip包

这种方法可以快速批量卸载多个包,但要注意在卸载之前,请确保您已备份重要的数据或代码,并且谨慎检查。在命令行或终端中,使用以下命令生成一个已安装包的列表文件。的文件,其中包含了当前环境中已安装的所有包及其版本信息。文件中列出的包列表,一次性卸载所有已安装的包。文件中列出的包,以确保不会误删除必要的包。文件,可以看到列出的所有包及其版本信息。在命令行或终端中,运行以下命令使用。

2023-09-22 16:09:29 5530 1

舌苔数据集,两千多张图片,512x512通道,包含原图和labelme打好的标签

舌苔数据集,两千多张图片,512x512通道,包含原图和labelme打好的标签

2023-10-24

舌苔的数据集,已经将每个类别分好,大小是512x512,RGB三色通道

舌苔的数据集,已经将每个类别分好,大小是512x512,RGB三色通道

2023-09-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除