R语言编写自定义函数对数据进行标准化、使用keras包构建深度学习自动编码器(autoencoder)、抽取训练后的自动编码器的中间层实现信息压缩的功能(数据降维功能)

本文介绍了使用R语言进行数据标准化,然后利用keras包构建深度学习自动编码器(autoencoder)进行数据降维。通过训练后的自动编码器中间层,实现信息的有效压缩,以降低数据的复杂性。文中还提及了PCA和自动编码器在数据降维上的区别,并展示了使用自动编码器的R代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值