【机器学习】特征降维|低方差过滤|主成分分析PCA|相关系数法|皮尔逊相关系数|斯皮尔曼相关系数

特征降维

特征降维

  • 为什么要进行特征降维?
    • 特征对训练模型非常重要,当用于训练的数据集包涵一些不重要的特征时,可能会导致模型泛化性能不加
      • eg:某些特征的取值较为接近,其包含的信息较少
      • eg:希望特征独立存在对预测产生影响,两个特征同增同减非常相关,不会给模型带来更多的信息
  • 特征降维目的
    • 在某些特定的情况下,降低特征个数
    • 特征降维涉及的知识面比较多,当前阶段常用的方法:
      • 低方差过滤法
      • PAC 主成分分析降维法
      • 相关系数法(皮尔逊相关系数 斯皮尔曼相关系数)

低方差过滤

  • 低方差过滤法: 指的是删除方差低于某一阈值的特征
    • 特征方差小: 特征值的波动范围小 包含的信息少 模型不易学到信息
    • 特征方差大: 特征值的波动范围大 包含的信息多 便于模型学习
  • 低方差过滤API
# 实例化对象用于删除所有低方差特征
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
variance_obj.fit_transform(X)
	# X.shape : [n_samples,n_features]
# 返回值:训练集差异低于threshold的特征将被删除。
	#默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征
  • 代码实现
# 1.导入依赖包
from sklearn.feature_selection import VarianceThreshold
import pandas as pd

# 2. 读取数据集
data = pd.read_csv('data/垃圾邮件分类数据.csv')
print(data.shape) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值