罗德里格斯公式

罗德里格斯公式

如果v R 3 R^3 R3中的向量,k是描述旋转轴的单位向量,根据右手定则v围绕该旋转轴旋转角度θ ,旋转向量的 V r o t V_{rot} Vrot罗德里格斯公式为

V r o t = cos ⁡ θ V + ( 1 − cos ⁡ θ ) ( V ⋅ K ) K + sin ⁡ θ K × V V_{rot}= \cos\theta V + (1-\cos\theta)(V \cdot K)K + \sin\theta K\times V Vrot=cosθV+(1cosθ)(VK)K+sinθK×V

推导

在这里插入图片描述

​ 图一

k为定义旋转轴的单位向量,令v为围绕k旋转角度θ的任意向量(右手定则,图中逆时针方向)。

使用积和叉积,向量v可以分解为平行和垂直于轴k的分量

V = V ∥ + V ⊥ V = V_ \parallel + V_ \perp V=V+V

其中与 K K K平行的分量是: V ∥ = ( V ⋅ K ) K V_ \parallel = (V \cdot K)K V=(VK)K ,

V ∥ V_ \parallel V看作向量v在轴k上的投影。

V ⊥ = V − V ∥ = V − ( V ⋅ K ) K = − K × ( K × V ) V_ \perp = V - V_ \parallel = V - (V \cdot K)K = -K\times(K\times V) V=VV=V(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值