罗德里格斯公式
如果v是 R 3 R^3 R3中的向量,k是描述旋转轴的单位向量,根据右手定则v围绕该旋转轴旋转角度θ ,旋转向量的 V r o t V_{rot} Vrot罗德里格斯公式为
V r o t = cos θ V + ( 1 − cos θ ) ( V ⋅ K ) K + sin θ K × V V_{rot}= \cos\theta V + (1-\cos\theta)(V \cdot K)K + \sin\theta K\times V Vrot=cosθV+(1−cosθ)(V⋅K)K+sinθK×V
推导
图一
令k为定义旋转轴的单位向量,令v为围绕k旋转角度θ的任意向量(右手定则,图中逆时针方向)。
V = V ∥ + V ⊥ V = V_ \parallel + V_ \perp V=V∥+V⊥
其中与 K K K平行的分量是: V ∥ = ( V ⋅ K ) K V_ \parallel = (V \cdot K)K V∥=(V⋅K)K ,
V ∥ V_ \parallel V∥看作向量v在轴k上的投影。
V ⊥ = V − V ∥ = V − ( V ⋅ K ) K = − K × ( K × V ) V_ \perp = V - V_ \parallel = V - (V \cdot K)K = -K\times(K\times V) V⊥=V−V∥=V−(