【每日算法】专题十三_队列 + 宽搜(bfs)

1. 算法思路

BFS 算法核心思路

BFS(广度优先搜索)使用  队列(Queue)按层级顺序遍历图或树的节点。以下是 C++ 实现的核心思路和代码模板:

算法框架

#include <queue>
#include <vector>
#include <unordered_set>  // 用于图的去重

// 树的 BFS 层序遍历
vector<vector<int>> bfs(TreeNode* root) {
    vector<vector<int>> result;
    if (!root) return result;
    
    queue<TreeNode*> q;
    q.push(root);  // 根节点入队
    
    while (!q.empty()) {
        int level_size = q.size();  // 当前层的节点数
        vector<int> current_level;
        
        // 处理当前层的所有节点
        for (int i = 0; i < level_size; i++) {
            TreeNode* node = q.front();
            q.pop();  // 队首出队
            
            current_level.push_back(node->val);
            
            // 将子节点入队
            if (node->left) q.push(node->left);
            if (node->right) q.push(node->right);
        }
        
        result.push_back(current_level);  // 添加当前层到结果
    }
    
    return result;
}

关键点

  1. 队列操作

    • push():将节点加入队尾
    • front():获取队首元素
    • pop():移除队首元素
    • empty():判断队列是否为空
  2. 层级控制

    • 通过 level_size 记录当前层的节点数,确保每层节点被单独处理。
  3. 图的 BFS(需去重)

 

void graphBFS(vector<vector<int>>& graph, int start) {
    queue<int> q;
    unordered_set<int> visited;
    
    q.push(start);
    visited.insert(start);
    
    while (!q.empty()) {
        int node = q.front();
        q.pop();
        
        // 处理当前节点
        cout << node << " ";
        
        // 遍历所有邻接节点
        for (int neighbor : graph[node]) {
            if (visited.find(neighbor) == visited.end()) {
                visited.insert(neighbor);
                q.push(neighbor);
            }
        }
    }
}

 

应用场景

  1. 二叉树层序遍历
  2. 无权图最短路径
int shortestPath(vector<vector<int>>& graph, int start, int target) {
    queue<pair<int, int>> q;  // {节点, 距离}
    unordered_set<int> visited;
    
    q.push({start, 0});
    visited.insert(start);
    
    while (!q.empty()) {
        auto [node, dist] = q.front();
        q.pop();
        
        if (node == target) return dist;
        
        for (int neighbor : graph[node]) {
            if (!visited.count(neighbor)) {
                visited.insert(neighbor);
                q.push({neighbor, dist + 1});
            }
        }
    }
    
    return -1;  // 无法到达
}
  1. 状态扩展问题(如迷宫)

总结

  • 队列选择:C++ 中使用 std::queue 或 std::deque
  • 去重机制:图的 BFS 必须用 unordered_set 避免重复访问。
  • 层级处理:通过记录每层节点数实现逐层遍历。

2. 例题

2.1 N 叉数的层序遍历

429. N 叉树的层序遍历 - 力扣(LeetCode)

 

核心思路:队列驱动的层序遍历

这段代码实现了 N 叉树的层序遍历,核心思路是利用队列的 FIFO(先进先出)特性 逐层处理节点。具体步骤如下:

  1. 初始化队列:将根节点放入队列。
  2. 循环处理每一层
    • 记录当前层节点数 sz(即队列当前长度)。
    • 创建当前层的临时数组 tmp
    • 遍历当前层所有节点
      • 从队列取出节点,将值加入 tmp
      • 将该节点的所有子节点依次入队(确保下一层节点被加入队列尾部)。
    • 将当前层结果 tmp 加入最终结果 ret
  3. 返回结果:当队列为空时,所有层处理完毕。

关键点

  • 层级控制:通过 sz 锁定当前层的节点数,确保每次循环处理完一层的所有节点。
  • 队列的作用
    • 出队:处理当前层的节点。
    • 入队:按顺序存储下一层的节点。
  • 适用于 N 叉树:通过 children 数组处理任意数量的子节点。

复杂度分析

  • 时间复杂度:O (n),每个节点仅入队 / 出队一次。
  • 空间复杂度:O (n),最坏情况下队列同时存储一层的所有节点(例如满二叉树的最后一层)。
    vector<vector<int>> levelOrder(Node* root) {
        vector<vector<int>> ret;
        queue<Node*> q;
        if(root == nullptr) return ret;

        q.push(root);
        while(q.size())
        {
            int sz = q.size();
            vector<int> tmp;
            for(int i = 0; i < sz; ++i)
            {
                Node* t = q.front();
                q.pop();
                tmp.push_back(t->val);
                for(Node* child : t->children)
                    q.push(child);
            }
            ret.push_back(tmp);
        }

        return ret;
    }

2.2 二叉树的锯齿层序遍历

103. 二叉树的锯齿形层序遍历 - 力扣(LeetCode)

 

核心思路:基于队列的 zigzag 层序遍历(之字形遍历)

这段代码实现了二叉树的 之字形层序遍历(即相邻层的节点顺序相反:第一层从左到右,第二层从右到左,第三层再从左到右,以此类推),核心思路是利用 队列控制层级 + 双端队列(deque)控制每层顺序。具体步骤如下:

  1. 初始化队列:将根节点入队,用 flag 标记当前层的遍历方向(初始为 true,表示从左到右)。
  2. 循环处理每一层
    • 记录当前层节点数 sz(锁定当前层的节点范围)。
    • 创建双端队列 tmp(支持头部和尾部插入,灵活控制顺序)。
    • 遍历当前层所有节点
      • 从队列取出节点。
      • 根据 flag 决定插入方向:
        • flag = true 时,从尾部插入(push_back),保持左到右顺序。
        • flag = false 时,从头部插入(push_front),实现右到左顺序。
      • 将节点的左右子节点依次入队(确保下一层节点按正常顺序存储)。
    • 转换并保存当前层结果:将 tmp 转为 vector<int> 后加入最终结果 ret
    • 翻转方向标记flag = !flag,下一层使用相反顺序。
  3. 返回结果:队列为空时,所有层处理完毕。

关键点

  • 队列的作用:控制层级顺序,确保按层依次处理节点(与普通层序遍历一致)。
  • 双端队列的作用:通过头部 / 尾部插入,在不改变子节点入队顺序的前提下,灵活反转当前层的输出顺序。
  • 方向标记 flag:切换相邻层的遍历方向,实现 “之字形” 效果。

复杂度分析

  • 时间复杂度:O (n),每个节点仅入队 / 出队一次,双端队列的插入操作是 O (1)。
  • 空间复杂度:O (n),队列和双端队列最多同时存储一层的所有节点。
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        vector<vector<int>> ret;
        queue<TreeNode*> q;
        if(root == nullptr) return ret;

        q.push(root);
        bool flag = true;
        while(q.size())
        {
            int sz = q.size();
            deque<int> tmp;
            for(int i = 0; i < sz; ++i)
            {
                TreeNode* t = q.front();
                q.pop();

                if(flag) // 左向右
                    tmp.push_back(t->val);
                else // 右向左
                    tmp.push_front(t->val);

                if(t->left)
                    q.push(t->left);
                if(t->right)
                    q.push(t->right);
            }
            ret.push_back(vector<int>{tmp.begin(), tmp.end()});
            flag = !flag;
        } 

        return ret;
    }

2.3 二叉树最大宽度

662. 二叉树最大宽度 - 力扣(LeetCode)

核心思路:二叉树最大宽度计算(层序遍历 + 节点编号)

这段代码实现了计算二叉树的最大宽度(即任意层的最左节点和最右节点之间的跨度,包含空节点),核心思路是通过层序遍历 + 节点编号来确定每层的宽度。具体步骤如下:

  1. 队列初始化:用 vector<pair<TreeNode*, unsigned int>> 存储节点及其编号(根节点编号为 0)。编号规则为:若父节点编号为 x,则其左子节点编号为 2x,右子节点编号为 2x+1

  2. 循环处理每一层

    • 计算当前层宽度:当前层的宽度为队列中首尾节点的编号之差 + 1(即 x2 - x1 + 1),更新全局最大宽度 ret
    • 生成下一层节点:遍历当前层所有节点,将每个节点的子节点(若存在)及其编号加入临时队列 tmp
      • 左子节点:编号为 2 * x
      • 右子节点:编号为 2 * x + 1
    • 更新队列:用临时队列 tmp 替换当前队列 q,进入下一层循环。
  3. 返回结果:遍历完所有层后,ret 即为二叉树的最大宽度。

关键点

  • 节点编号:通过编号计算每层宽度,避免直接统计节点数(处理空节点的关键)。
  • 层序遍历:确保按层处理节点,计算每层的首尾跨度。
  • 容器选择
    • 方法一:用 vector 存储每层节点,遍历后整体替换(更高效)。
    • 方法二:用 erase 删除队首元素(性能较差,因 vector 的头部删除是 O (n))。
  • 数据类型:使用 unsigned int 避免编号溢出(某些极端二叉树的编号可能非常大)。

复杂度分析

  • 时间复杂度:O (n),每个节点仅处理一次。
  • 空间复杂度:O (n),队列最多存储一层的所有节点。

 

    int widthOfBinaryTree(TreeNode* root) {
        int ret = 0;
        vector<pair<TreeNode*, unsigned int>> q; // 用vector可以进行下标访问,取第一个和最后一个数
        if(root == nullptr) return ret;

        q.push_back({root, 0});
        while(q.size())
        {
            // 计算每层的最大宽度
            auto& [y1, x1] = q[0];
            auto& [y2, x2] = q.back();
            ret = max(ret, (int)(x2 - x1 + 1));

            // 层序遍历

            // 法一
            vector<pair<TreeNode*, unsigned int>> tmp;
            for(auto& [y3, x3] : q)
            {
                if(y3->left)
                    tmp.push_back({y3->left, 2 * x3});
                if(y3->right)
                    tmp.push_back({y3->right, 2 * x3 + 1});
            }
            
            // 法二,注意的是频繁的头部删除应该选用deque做容器n(1)
            //int sz = q.size();
            // while(sz--)
            // {
            //     auto [y3, x3] = q[0];
            //     q.erase(q.begin());
            //     if(y3->left)
            //         q.push_back({y3->left, 2 * x3});
            //     if(y3->right)
            //         q.push_back({y3->right, 2 * x3 + 1});
            // }
            q = tmp;
        }

        return ret;
    }

 

2.4 在每个树行中找最大值

515. 在每个树行中找最大值 - 力扣(LeetCode)

核心思路:二叉树每层最大值(层序遍历 + 分组统计)

这段代码实现了找出二叉树每一层的最大值,核心思路是利用队列进行层序遍历,并在每一层遍历时维护当前层的最大值。具体步骤如下:

  1. 队列初始化:将根节点加入双端队列 q

  2. 循环处理每一层

    • 初始化当前层最大值 ma 为 INT_MIN
    • 锁定当前层节点数 sz(即队列当前长度)。
    • 遍历当前层所有节点
      • 取出队首节点,更新 ma 为 ma 和当前节点值的较大值。
      • 将该节点的左右子节点(若存在)加入队列尾部。
      • 从队列头部移除当前节点(确保处理完所有当前层节点)。
    • 当前层遍历结束后,将 ma 加入结果数组 ret
  3. 返回结果:遍历完所有层后,ret 即为每层的最大值数组。

关键点

  • 层级控制:通过 sz 锁定当前层的节点数,确保每次循环处理完一层的所有节点。
  • 最大值维护:在遍历每层节点时,动态更新当前层的最大值 ma
  • 队列操作
    • 入队:将下一层的节点加入队列尾部。
    • 出队:从队列头部取出并移除当前层的节点。

复杂度分析

  • 时间复杂度:O (n),每个节点仅入队 / 出队一次。
  • 空间复杂度:O (n),最坏情况下队列同时存储一层的所有节点(例如满二叉树的最后一层)。
    vector<int> largestValues(TreeNode* root) {
        vector<int> ret;
        if(root == nullptr) return ret;
        deque<TreeNode*> q;

        q.push_back(root);
        while(q.size())
        {
            int ma = INT_MIN;
            // deque<TreeNode*> tmp;
            // for(auto n : q)
            // {
            //     ma = max(ma, n->val);
            //     if(n->left)
            //         tmp.push_back(n->left);
            //     if(n->right)
            //         tmp.push_back(n->right);
            // }
            // q = tmp;

            int sz = q.size();
            while(sz--)
            {
                ma = max(ma, (q.front()->val));
                // TreeNode* t = q.top();
                // q.pop();
                if(q.front()->left)
                    q.push_back(q.front()->left);
                if(q.front()->right)
                    q.push_back(q.front()->right);
                q.pop_front();
            }
            ret.push_back(ma);
        }

        return ret;
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Warrior

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值