论文笔记分享, 标题Inference Scaling for Long-Context Retrieval Augmented Generation,来自google deepmind
openai o1通过让扩展推理,让模型在推理方面达到非常优异的性能。google这篇内容,核心想验证2个点
-
RAG系统的性能,如何从推理计算扩展中受益
-
通过建立RAG性能和推理参数之间的关系模型来预测给定预算下的最佳测试时计算分配
文中应用了2种扩展方式,DRAG,IterRAG均有效的提高了RAG系统的性能。并且,当最优分配时,增加推理计算几乎可以线性提升RAG性能,这种关系表示为RAG的推理扩展法则。
在RAG中,与O1不同的是,用有效上下文长度来衡量推理计算。有效上下文长度为在LLM输出最终答案之前,所有迭代中总的输入token数量。
对于大多数只调用一次LLM的方法,有效上下文长度相当于prompt中的token数量,并受限于LLM的上下文窗口限制。
这里排除输出成本和检索成本,因为LLMs通常在知识密集型任务中通常答案比较短,可能是精确的实体或数字。
2种扩展上下文的方式
- DRAG
-
D是Demo的意思,就是通过提供多个RAG的示例作为few-shot,提高LLMs的上下文能力。
-
输入构成有3部分,检索到的文档、输入query以及相应的问题和答案示例。所以可以扩展的有2部分,就是检索的文档数量,以及示例的数量。
- IterRAG
-
Iter就是迭代的意思,通过将复杂查询分解为多个子查询来解决多跳的问题
-
在每次迭代中,模型可能会生成一个子查询、一个中间答案或最终答案。这个过程会重复迭代,直到生成最终答案或达到最大迭代次数。
总体的呈现线性的扩展规律,性能跟上下文长度之间。DRAG受限于1M窗口的限制,IterRAG可以通过迭代在更长上下文的时候表现出良好的扩展。
参数特定的缩放,总体而言,,扩大检索范围、增加例子数量、增加生成步骤的数量都会提高性能,但是收益会因有效上下文长度和方法的不同而不同。看下图斜率,增加文档数量可以得到更大的提升。并且DRAG和IterRAG的饱和程度不同。
最后给定上下文长度的最大预算,一个公式如下,其中中考虑了文档数量,示例,迭代次数等参数。但是这些参数跟特定模型相关。需要对进行实验,然后MSE算出a、b、c的最优值。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。