排座椅-蓝桥杯

文章描述了一种编程问题,旨在帮助小学班主任减少学生上课时交头接耳的情况。通过重新规划教室中的横向和纵向通道,可以隔开交头接耳的同学。题目提供输入描述,包括教室的行数、列数、已有通道数和学生交头接耳的对数,要求输出最优的通道方案。解法中展示了如何找出最佳的通道位置以分割最多交头接耳的学生对。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

上课的时候总有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情。不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有有限的 DD 对同学上课时会交头接耳。同学们在教室中坐成了 MM 行 NN 列,坐在第 ii 行第 jj 列的同学的位置是(i,j)(i,j),为了方便同学们进出,在教室中设置了 KK 条横向的通道,LL 条纵向的通道。于是,聪明的小雪想到了一个办法,或许可以减少上课时学生交头接耳的问题:她打算重新摆放桌椅,改变同学们桌椅间通道的位置,因为如果一条通道隔开了两个会交头接耳的同学,那么他们就不会交头接耳了。

请你帮忙给小雪编写一个程序,给出最好的通道划分方案。在该方案下,上课时交头接耳的学生对数最少。

输入描述

输入第一行,有 5 各用空格隔开的整数,分别是 M,N,K,L,D(2 \leq N,M \leq 1000,0 \leq K<M,0 \leq L<N,D \leq 2000)M,N,K,L,D(2≤N,M≤1000,0≤K<M,0≤L<N,D≤2000)。

接下来 DD 行,每行有 4 个用空格隔开的整数,第 ii 行的 44 个整数 X_i,Y_i,P_i,Q_iXi​,Yi​,Pi​,Qi​,表示坐在位置 (X_i,Y_i)(Xi​,Yi​) 与 (P_i,Q_i)(Pi​,Qi​) 的两个同学会交头接耳(输入保证他们前后相邻或者左右相邻)。

输入数据保证最优方案的唯一性。

输出描述

输出共两行。

第一行包含 KK 个整数,a_1,a_2,\cdots a_Ka1​,a2​,⋯aK​,表示第 a_1a1​ 行和 a_1+1a1​+1 行之间、第 a_2a2​ 行和第 a_2+1a2​+1 行之间、…、第 a_KaK​ 行和第 a_K+1aK​+1 行之间要开辟通道,其中 a_i < a_i+1ai​<ai​+1,每两个整数之间用空格隔开(行尾没有空格)。

第二行包含 LL 个整数,b_1,b_2,\cdots b_kb1​,b2​,⋯bk​,表示第 b_1b1​ 列和 b_1+1b1​+1 列之间、第 b_2b2​ 列和第 b_2+1b2​+1 列之间、…、第 b_LbL​ 列和第 b_L+1bL​+1 列之间要开辟通道,其中 b_i < b_i+1bi​<bi​+1,每两个整数之间用空格隔开(行尾没有空格)。

输入输出样例

示例 1

输入

4 5 1 2 3
4 2 4 3
2 3 3 3
2 5 2 4

输出

2
2 4

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 128M

解法

import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        //在此输入您的代码...
        int M = scan.nextInt();
        int N = scan.nextInt();
        int K = scan.nextInt();
        int L = scan.nextInt();
        int D = scan.nextInt();
        int[] X = new int[M];//行桶
        int[] Y = new int[N];//列桶
        int[] x = new int[M];//横向通道标记
        int[] y = new int[N];//纵向通道标记
        for (int d = 0; d < D; d++) {
            int x1 = scan.nextInt();
            int y1 = scan.nextInt();
            int x2 = scan.nextInt();
            int y2 = scan.nextInt();
            if (x1 == x2){            //同行
                y1 = y1<=y2 ? y1:y2;  //最小列数
                Y[y1]++;              //对应最小列桶的值+1
                continue;
            }
            if(y1 == y2){             //同列
                x1 = x1<=x2 ? x1:x2;  //最小行数
                X[x1]++;              //对应最小行桶的值+1
            }
        }
        int index;  //记录下标
        int max;    //记录最大值
        for (int i = 0; i < K; i++) { //找出行桶中前K个最大值,并记录他们的下标
            index = 1;
            max = X[1];
            for (int j = 2; j < M; j++) {
                if(X[j]>max){
                    max=X[j];
                    index=j;
                }
            }
            x[index] = 1;
            X[index] = 0;
        }
        for (int i = 0; i < L; i++) { //找出列桶中前L个最大值,并记录他们的下标
            index = 1;
            max = Y[1];
            for (int j = 2; j < N; j++) {
                if(Y[j]>max){
                    max = Y[j];
                    index = j;
                }
            }
            y[index] = 1;
            Y[index] = 0;
        }
        for (int i = 0; i < M; i++) { // K 条横向的通道。
            if(x[i]==1){
                System.out.print(i + " ");
            }
        }
        System.out.println();
        for (int i = 0; i < N; i++) { // L 条纵向的通道。
            if(y[i]==1){
                System.out.print(i + " ");
            }
        }
        scan.close();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值