题目描述
上课的时候总有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情。不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有有限的 DD 对同学上课时会交头接耳。同学们在教室中坐成了 MM 行 NN 列,坐在第 ii 行第 jj 列的同学的位置是(i,j)(i,j),为了方便同学们进出,在教室中设置了 KK 条横向的通道,LL 条纵向的通道。于是,聪明的小雪想到了一个办法,或许可以减少上课时学生交头接耳的问题:她打算重新摆放桌椅,改变同学们桌椅间通道的位置,因为如果一条通道隔开了两个会交头接耳的同学,那么他们就不会交头接耳了。
请你帮忙给小雪编写一个程序,给出最好的通道划分方案。在该方案下,上课时交头接耳的学生对数最少。
输入描述
输入第一行,有 5 各用空格隔开的整数,分别是 M,N,K,L,D(2 \leq N,M \leq 1000,0 \leq K<M,0 \leq L<N,D \leq 2000)M,N,K,L,D(2≤N,M≤1000,0≤K<M,0≤L<N,D≤2000)。
接下来 DD 行,每行有 4 个用空格隔开的整数,第 ii 行的 44 个整数 X_i,Y_i,P_i,Q_iXi,Yi,Pi,Qi,表示坐在位置 (X_i,Y_i)(Xi,Yi) 与 (P_i,Q_i)(Pi,Qi) 的两个同学会交头接耳(输入保证他们前后相邻或者左右相邻)。
输入数据保证最优方案的唯一性。
输出描述
输出共两行。
第一行包含 KK 个整数,a_1,a_2,\cdots a_Ka1,a2,⋯aK,表示第 a_1a1 行和 a_1+1a1+1 行之间、第 a_2a2 行和第 a_2+1a2+1 行之间、…、第 a_KaK 行和第 a_K+1aK+1 行之间要开辟通道,其中 a_i < a_i+1ai<ai+1,每两个整数之间用空格隔开(行尾没有空格)。
第二行包含 LL 个整数,b_1,b_2,\cdots b_kb1,b2,⋯bk,表示第 b_1b1 列和 b_1+1b1+1 列之间、第 b_2b2 列和第 b_2+1b2+1 列之间、…、第 b_LbL 列和第 b_L+1bL+1 列之间要开辟通道,其中 b_i < b_i+1bi<bi+1,每两个整数之间用空格隔开(行尾没有空格)。
输入输出样例
示例 1
输入
4 5 1 2 3
4 2 4 3
2 3 3 3
2 5 2 4
输出
2
2 4
运行限制
- 最大运行时间:1s
- 最大运行内存: 128M
解法
import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
//在此输入您的代码...
int M = scan.nextInt();
int N = scan.nextInt();
int K = scan.nextInt();
int L = scan.nextInt();
int D = scan.nextInt();
int[] X = new int[M];//行桶
int[] Y = new int[N];//列桶
int[] x = new int[M];//横向通道标记
int[] y = new int[N];//纵向通道标记
for (int d = 0; d < D; d++) {
int x1 = scan.nextInt();
int y1 = scan.nextInt();
int x2 = scan.nextInt();
int y2 = scan.nextInt();
if (x1 == x2){ //同行
y1 = y1<=y2 ? y1:y2; //最小列数
Y[y1]++; //对应最小列桶的值+1
continue;
}
if(y1 == y2){ //同列
x1 = x1<=x2 ? x1:x2; //最小行数
X[x1]++; //对应最小行桶的值+1
}
}
int index; //记录下标
int max; //记录最大值
for (int i = 0; i < K; i++) { //找出行桶中前K个最大值,并记录他们的下标
index = 1;
max = X[1];
for (int j = 2; j < M; j++) {
if(X[j]>max){
max=X[j];
index=j;
}
}
x[index] = 1;
X[index] = 0;
}
for (int i = 0; i < L; i++) { //找出列桶中前L个最大值,并记录他们的下标
index = 1;
max = Y[1];
for (int j = 2; j < N; j++) {
if(Y[j]>max){
max = Y[j];
index = j;
}
}
y[index] = 1;
Y[index] = 0;
}
for (int i = 0; i < M; i++) { // K 条横向的通道。
if(x[i]==1){
System.out.print(i + " ");
}
}
System.out.println();
for (int i = 0; i < N; i++) { // L 条纵向的通道。
if(y[i]==1){
System.out.print(i + " ");
}
}
scan.close();
}
}