论文阅读——《DTL-IDS: An optimized Intrusion Detection Framework using Deep Transfer Learning and .....》

一.基本信息

论文名称:《DTL-IDS: An optimized Intrusion Detection Framework using Deep Transfer Learning and Genetic Algorithm》

中文:DTL-IDS:基于深度迁移学习和遗传算法的入侵检测优化框架

DOI号:10.1016/j.jnca.2023.103784

作者:Shahid Latif, Wadii Boulila, Anis Koubaa, Zhuo Zou, Jawad Ahmad

期刊:Journal of Network and Computer Applications

发表时间:2024年

中科院分区:2区

JCR分区:Q1

影响指数:8.8



二.论文阅读

1.研究背景

        1.研究所处环境背景:

         工业物联网盛行,但是工业物联网设备和网络容易受到多种网络攻击,面临着严峻的安全和隐私问题,因此保证设备和网络的稳健性和鲁棒性迫在眉睫;入侵检测系统常常用来保护IOT网络免受网络攻击

        2.当前研究出现的问题:

        IDS模型中,预定义的攻击分类列表无法应对新的和独特的攻击;数据集样本不均衡,正常样本占比高

2.研究贡献(整个论文干了什么)

1.将Edge-IIoTset数据集预处理,编码并转换为图像数据

2.提出了一种基于深度迁移学习和遗传算法优化的高效入侵检测方案,通过集成多个优化的预训练CNN模型来提升工业物联网网络中网络攻击的检测性能和准确性

3.全面分析性能

3.相关技术前提介绍

        1.什么是迁移学习

迁移学习是说将模型用其他数据集进行训练,然后再使用实验的数据集

        2.CNN层的特点

CNN模型的特点:CNN模型可以被分为顶层和底层,其中底层是输入层和前几个卷积层与池化层,这些是模型的基础,即使不同的CNN模型,其底层也是大致是一样的,因此具有通用性;而顶层一般是后面的卷积层、池化层以及输出层,与具体的任务有关

CNN的卷积层:CNN一般是包括 输入层 卷积层 池化层 输出层,其中这个卷积层的个数根据具体情况而定,简单任务的模型卷积层可能只需要2-3个,有的大模型的卷积层可能要上百;卷积层作用就是利用卷积核来进行特征提取。

卷积层的分类:

不同的模型的卷积层数量不同,但是其可以大致分为四类:底层、中层、高层、任务特定层

        底层卷积层:他指的是第1,或者前几个卷积层,他的作用是提取图像基本特征 ;简单来理解就是模型学习“这是一条直线”,“这是一个拐点”,一般来说,各个模型的底层是相同或者相似的,所以可以通用;或者说直接用于其他的任务

        中层卷积层:结合底层卷积,提取部分特征,比如提取到老虎的“王”

       &n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值