一.基本信息
论文名称:《DTL-IDS: An optimized Intrusion Detection Framework using Deep Transfer Learning and Genetic Algorithm》
中文:DTL-IDS:基于深度迁移学习和遗传算法的入侵检测优化框架
DOI号:10.1016/j.jnca.2023.103784
作者:Shahid Latif, Wadii Boulila, Anis Koubaa, Zhuo Zou, Jawad Ahmad
期刊:Journal of Network and Computer Applications
发表时间:2024年
中科院分区:2区
JCR分区:Q1
影响指数:8.8
二.论文阅读
1.研究背景
1.研究所处环境背景:
工业物联网盛行,但是工业物联网设备和网络容易受到多种网络攻击,面临着严峻的安全和隐私问题,因此保证设备和网络的稳健性和鲁棒性迫在眉睫;入侵检测系统常常用来保护IOT网络免受网络攻击
2.当前研究出现的问题:
IDS模型中,预定义的攻击分类列表无法应对新的和独特的攻击;数据集样本不均衡,正常样本占比高
2.研究贡献(整个论文干了什么)
1.将Edge-IIoTset数据集预处理,编码并转换为图像数据
2.提出了一种基于深度迁移学习和遗传算法优化的高效入侵检测方案,通过集成多个优化的预训练CNN模型来提升工业物联网网络中网络攻击的检测性能和准确性
3.全面分析性能
3.相关技术前提介绍
1.什么是迁移学习
迁移学习是说将模型用其他数据集进行训练,然后再使用实验的数据集
2.CNN层的特点
CNN模型的特点:CNN模型可以被分为顶层和底层,其中底层是输入层和前几个卷积层与池化层,这些是模型的基础,即使不同的CNN模型,其底层也是大致是一样的,因此具有通用性;而顶层一般是后面的卷积层、池化层以及输出层,与具体的任务有关
CNN的卷积层:CNN一般是包括 输入层 卷积层 池化层 输出层,其中这个卷积层的个数根据具体情况而定,简单任务的模型卷积层可能只需要2-3个,有的大模型的卷积层可能要上百;卷积层作用就是利用卷积核来进行特征提取。
卷积层的分类:
不同的模型的卷积层数量不同,但是其可以大致分为四类:底层、中层、高层、任务特定层
底层卷积层:他指的是第1,或者前几个卷积层,他的作用是提取图像基本特征 ;简单来理解就是模型学习“这是一条直线”,“这是一个拐点”,一般来说,各个模型的底层是相同或者相似的,所以可以通用;或者说直接用于其他的任务
中层卷积层:结合底层卷积,提取部分特征,比如提取到老虎的“王”
&n