最简单的一集!
一个简单的MLP神经网络的训练步骤。
1.使用GPU加速
# 检查CUDA是否可用
if torch.cuda.is_available():
print("CUDA可用!")
# 获取可用的CUDA设备数量
device_count = torch.cuda.device_count()
print(f"可用的CUDA设备数量: {device_count}")
# 获取当前使用的CUDA设备索引
current_device = torch.cuda.current_device()
print(f"当前使用的CUDA设备索引: {current_device}")
# 获取当前CUDA设备的名称
device_name = torch.cuda.get_device_name(current_device)
print(f"当前CUDA设备的名称: {device_name}")
# 获取CUDA版本
cuda_version = torch.version.cuda
print(f"CUDA版本: {cuda_version}")
else:
print("CUDA不可用。")
2.归一化数据加速训练
# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放
3.定义网络结构
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Module
def __init__(self): # 初始化函数
super(MLP, self).__init__() # 调用父类的初始化函数
# 前三行是八股文,后面的是自定义的
self.fc1 = nn.Linear(4, 10) # 输入层到隐藏层
self.relu = nn.ReLU()
self.fc2 = nn.Linear(10, 3) # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 实例化模型
model = MLP()
4.损失函数和步长优化器选择
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)
5.模型训练
# 训练模型
num_epochs = 20000 # 训练的轮数
# 用于存储每个 epoch 的损失值
losses = []
for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始
# 前向传播
outputs = model.forward(X_train) # 显式调用forward函数
# outputs = model(X_train) # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签
# 反向传播和优化
optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
loss.backward() # 反向传播计算梯度
optimizer.step() # 更新参数
# 记录损失值
losses.append(loss.item())
# 打印训练信息
if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
6.查看训练结果