
机器学习实践
文章平均质量分 89
行至568
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【小白教程】远程连接服务器时使用 `screen` 进行进程守护:小白教程
screen进程守护原创 2025-01-08 15:36:43 · 656 阅读 · 0 评论 -
__init__、__len__、__getitem__及其他常用魔法方法
魔法方法是Python中的一类特殊方法,它们是内置的,可以让开发者在自定义类时重载Python的运算符或改变对象的行为。魔法方法也被称为“特殊方法”或“dunder方法”(因为它们的名字通常由两个下划线包围)。这些方法允许你定义和控制常见的对象行为,例如初始化、索引、运算符重载等。通过实现这些方法,你可以使你的类对象更加灵活和强大。通过这种方式,我们可以让自定义类像内建类型一样,具有与标准Python类型相同的行为。原创 2024-11-25 10:58:26 · 589 阅读 · 0 评论 -
机器学习dataloader中shuffle=True及使用随机种子控制随机性
数据随机打乱顺序,增强训练过程的随机性,防止模型记住数据顺序,从而提高泛化能力。随机种子控制:通过设置随机种子,我们可以确保实验结果的一致性和可复现性。即使数据顺序是随机的,使用相同的种子可以保证每次训练的数据顺序和其他随机操作一致。训练集 vs 验证集/测试集:训练集需要打乱数据顺序,以确保模型在每个 epoch 上看到不同的数据顺序,从而避免过拟合。而验证集和测试集的顺序不应打乱,保持一致性是为了准确评估模型的性能。原创 2024-11-25 11:21:22 · 1874 阅读 · 3 评论 -
Python 连接 SQL Server时参数填写获取步骤
使用 Python 通过pyodbc库 连接 SQL Server原创 2024-11-04 21:57:03 · 1020 阅读 · 0 评论 -
在PyTorch中集成TensorBoard:代码位置与注意事项详解
通过在代码中正确地集成TensorBoard,可以实时监控训练和验证过程中的损失变化,方便调试和优化模型。记录位置:确保在计算完需要记录的值之后,再调用等方法。参数正确性的参数要正确,标签名称清晰,数值准确,全局步骤数递增。日志目录管理:确保日志目录的唯一性,防止日志覆盖或混淆。性能考虑:避免过于频繁地记录数据,以免影响训练速度和日志文件大小。异常处理:考虑在程序异常退出时,仍然能够正确关闭writer,释放资源。原创 2024-11-26 08:00:00 · 1733 阅读 · 0 评论