复杂电磁环境下的信号分选与识别关键技术研究与实现--读后感(2)

该文探讨了复杂电磁环境中的信号处理,结合高阶累积量、幅度矩及时域特征参数,对2ASK、4ASK等不同调制信号进行识别。通过时域特征参数的零中心归一化瞬时幅度绝对值标注偏差,区分2ASK和4ASK,而幅度矩参数则用于进一步区分16QAM和64QAM信号,利用判决门限提高分选效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文采用高阶累积量、幅度矩以及时域特征参数门限法联合对 2ASK、4ASK、2PSK、4PSK、2FSK、4FSK、16QAM 以及 64QAM 信号进行分选识别。

 

 

 

 由于使用高阶累积量无法区分出 2ASK 以及 4ASK 信号,故采用时域特征参数对这两种信号进行分选。根据时域特征参数识别法的原理,要区分这两种信号只需使用零中心归一化瞬时幅度绝对值的标注偏差。大于门限值0.25为 2ASK信号,否则为 4ASK 信号。
 

  

 采用幅度矩参数可以分选经高阶累积量识别模块分选出的 16QAM 信号以及64QAM 信号。

为了取得较好的分选效果以便分选 16QAM 信号和 64QAM 信号,选用两者理论值中间值 T(NASM)=13作为判决门限。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值