人工智能的“人类梦”还有多远?杨立昆点破数学障碍与新出路

当Meta首席AI科学家预言“自回归大模型几年后注定淘汰”,我们该往何处寻找真正的机器智能?

周末听了Meta首席AI科学家、图灵奖得主杨立昆(Yann LeCun)在美国数学学会(AMS)吉布斯讲座上的演讲注:吉布斯讲座是AMS自1923年设立的顶级讲座,历届讲者包括冯·诺依曼、爱因斯坦等巨匠),演讲内容对于本数学学渣来说着实不浅,演讲中他揭示的AI困境与出路,对于我们这些关注AI落地的从业者需要理解的底层逻辑很有启迪之意。

一、 当前AI的“天花板”

杨立昆对未来十年构建接近人类水平的AI助手(他称之为AMI *法语发音”朋友“的意思* - Advanced Machine Intelligence ,而非AGI)充满信心,认为它们将通过智能眼镜等设备融入日常生活。但他也毫不客气地给当前主流AI,尤其是风光无限的大型语言模型(LLMs)泼了盆冷水:“目前的机器学习状态很糟糕”,尤其在学习效率上被人类和动物甩开几条街。

1. 低效的学习“三板斧”

  • 监督学习 (Supervised Learning):像手把手教小孩。需要大量精确标注的“输入-输出”配对(如图片和标签)。效率低,成本高。

  • 强化学习 (Reinforcement Learning):像训狗,只给“好/坏”的笼统反馈。需要海量试错,杨立昆直言它“只适用于游戏,或者可以在计算机上快速模拟的事物”。现实世界玩不起。

  • 自监督学习 (Self-supervised Learning):当前LLM的基石,看似革命性,实则暗藏巨大隐患(后面详说)。

2. LLMs:辉煌下的致命伤
LLMs的核心是自回归预测 (Auto-regressive prediction)。简单说,就是像“传话游戏”:模型根据已看到的词序列(“从前有座__”),预测下一个最可能的词(“山”),如此反复生成整个文本。它通过在海量文本(万亿级Token)上训练庞大的神经网络,最小化预测误差。

虽然效果惊艳(能写诗、编程、聊天),杨立昆却断言:“我的预测是,自回归大型语言模型注定失败。几年后,没有人会理智地使用它们。” 原因在于其根本缺陷

  • 发散过程 (Divergent Process):想象一棵大树,每个分叉代表一个可能的词(约10万个选择)。每次预测都有微小出错概率(E)。即使E很小,随着生成的词数(N)增加,整个序列完全正确的概率是 (1-E)^N — 呈指数级暴跌这就是LLM时不时“胡说八道”(幻觉/Hallucination)的数学根源。误差累积如同滚雪球,偏离正确答案的“小树枝”越来越远。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值