【算法刷题 | 动态规划13】6.18(最长递增子序列、最长连续递增子序列、最长重复子数组)

在这里插入图片描述

31.最长递增子序列

31.1题目

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7]

子序列。

  • 示例一:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
  • 示例二:
输入:nums = [0,1,0,3,2,3]
输出:4

32.2解法:动规

32.2.1动规思路

  1. 确定dp数组以及下标含义:

    dp[i]:表示i之前(包括i)的以nums[i]结尾的最长递增子序列的长度

  2. 确定递归函数

    位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值

  3. dp数组初始化:

    每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  4. 确定遍历顺序:

    外层循环数组的每个元素从前往后,内层循环也从前往后

32.2.2代码实现

	public int lengthOfLIS(int[] nums) {
   
   
        int  len=nums.length;
        int[] dp=new int[len];
        Arrays.fill(dp,1);
        int result=0;
        for(int i=0;i<len;i++){
   
   
            for(int j=0;j<i;j++){
   
   
                if
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自梦里的一条鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值