文章目录
31.最长递增子序列
31.1题目
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的
子序列。
- 示例一:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
- 示例二:
输入:nums = [0,1,0,3,2,3]
输出:4
32.2解法:动规
32.2.1动规思路
-
确定dp数组以及下标含义:
dp[i]:表示i之前(包括i)的以nums[i]结尾的最长递增子序列的长度
-
确定递归函数
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
-
dp数组初始化:
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
-
确定遍历顺序:
外层循环数组的每个元素从前往后,内层循环也从前往后
32.2.2代码实现
public int lengthOfLIS(int[] nums) {
int len=nums.length;
int[] dp=new int[len];
Arrays.fill(dp,1);
int result=0;
for(int i=0;i<len;i++){
for(int j=0;j<i;j++){
if