L2-017 人以群分(C语言)

该博客讨论了如何根据社交网络用户的活跃度将他们分为外向型和内向型两类,目标是使两类人群规模接近且活跃度差距最大化。文章提到了使用快速排序对活跃度进行排序,并给出了实现代码,通过计算前半部分和后半部分用户活跃度的总和来确定分类标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

題目:

社交网络中我们给每个人定义了一个“活跃度”,现希望根据这个指标把人群分为两大类,即外向型(outgoing,即活跃度高的)和内向型(introverted,即活跃度低的)。要求两类人群的规模尽可能接近,而他们的总活跃度差距尽可能拉开。

關於紅色字體的意思是:如果N為偶數,那我們就先排序,然後對半分求差值;若爲奇數,則N1=N/2,N2=N/2+1,即後半部分比前一部分多1,然後再求差

PS:關於排序,要用快排,冒泡會超時

代碼如下:

#include<stdio.h>
#include<stdlib.h>
#define max 100010
int arr[max] = { 0 };
int cmp(const void* a, const void* b);
int main()
{
	int N; scanf("%d", &N);
	int i, j;
	int N1, N2;
	int temp;
	for (i = 0; i < N; i++) {
		scanf("%d", &arr[i]);
	}
	//for (i = 0; i < N - 1; i++) {
	//	for (j = i + 1; j < N; j++) {
	//		if (arr[i] > arr[j]) {
	//			temp = arr[i];
	//			arr[i] = arr[j];
	//			arr[j] = temp;
	//		}
	//	}
	//}這裏要用快排,冒泡會超時
	qsort(arr, N, sizeof(int), cmp);
	N1 = N / 2, N2 = N - N1;
	int sum1 = 0, sum2 = 0;
	for (i = 0; i < N1; i++) {
		sum1 += arr[i];
	}
	for (i = N1; i < N; i++) {
		sum2 += arr[i];
	}
	printf("Outgoing #: %d\nIntroverted #: %d\nDiff = %d",N2,N1,sum2-sum1);
	return 0;
}
int cmp(const void* a, const void* b) {
	return (*(int*)a - *(int*)b);
}

記錄學習的一天。

### L2-017 人以群分 Java 编程题解 对于L2-017题目“人以群分”,该问题主要涉及社交网络中的群体划分,即给定一组人的关系网,找出其中的最大完全子图(也称为最大团)。这类问题是NP难问题,在实际求解过程中通常采用回溯法或其他启发式算法来寻找近似最优解[^2]。 #### 解决方案概述 为了有效解决这个问题,可以考虑使用深度优先搜索(DFS)配合剪枝策略。具体来说: - 构建邻接矩阵表示人际关系; - 使用DFS遍历所有可能的人际组合; - 应用剪枝技术减少不必要的计算量; 这种方法能够较为高效地找到满足条件的最大人群集合。 #### 实现代码示例 以下是基于上述思路的一个简单Java实现版本: ```java import java.util.*; public class GroupDivision { private static int n; // 总人数 private static boolean[][] graph; private static List<Integer> currentGroup = new ArrayList<>(); private static List<Integer> maxGroup = new ArrayList<>(); public static void main(String[] args){ Scanner scanner = new Scanner(System.in); // 输入处理... n = ... ;//读取总人数 graph = new boolean[n][n]; for (int i=0;i<n;i++){ String line = scanner.nextLine(); char[] chars = line.toCharArray(); Arrays.fill(graph[i], false); for(int j=0;j<chars.length;j++) if(chars[j]=='Y')graph[i][j]=true; } dfs(0); System.out.println(maxGroup.size()); Collections.sort(maxGroup); for(Integer id:maxGroup) System.out.print(id+" "); } private static void dfs(int start){ if(start==n){ if(currentGroup.size()>maxGroup.size()) maxGroup=new ArrayList<>(currentGroup); return ; } Set<Integer> candidates=getCandidates(start); // 获取候选节点 for(Integer candidate:candidates){ currentGroup.add(candidate); dfs(start+1); currentGroup.remove((Integer)candidate); while(start+1<n&&!candidates.contains(start+1)) ++start; } dfs(start+1); } private static Set<Integer> getCandidates(int index){ Set<Integer> res = new HashSet<>(); for(int i=index;i<n;++i){ boolean valid=true; for(Integer member : currentGroup) if(!graph[member][i]){ valid=false;break; } if(valid)res.add(i); } return res; } } ``` 此段代码实现了基本的功能框架,但在输入解析部分省略了一些细节,使用者可以根据实际情况补充完整的输入逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值