描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n张地毯,编号从1到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后对齐,后铺的地毯覆盖在前面已经铺好的地毯之上。注意:在矩形地毯的边界和四个顶部的点也算被地毯覆盖。输入输出样例1说明:如下图,1号地毯用实线表示,2号地毯用虚线表示,3号用双实线表示,覆盖点(2,2)的最上面一张地毯是3号地毯。
输入
第一行,一个整数n(n≤10000),表示总共有n张地毯。接下来的n行中,第i+1行表示编号i的地毯的信息,包含四个正整数a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x轴和y轴方向的长度。第n+2行包含两个正整数x和y,表示所求的地面的点的坐标(x,y)。
输出
输出共1行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
#include<stdio.h>
int main(){
int a[10002][4],i,j,k,n=1,x,y;
scanf("%d",&i);
for(x=0;x<i;x++){
for(y=0;y<4;y++){
scanf("%d",&a[x][y]);
}
}
scanf("%d%d",&j,&k);
for(x=i-1;x>=0;x--){
if(j>=a[x][0] && j<=(a[x][0]+a[x][2]) && k>=a[x][1] && k<=(a[x][3]+a[x][1])){
printf("%d",x+1);
n=2;
break;
}
}
if(n==1){
printf("-1");
}
return 0;
}