二维数组中的查找-牛客(Java)

文章介绍了一个在二维有序数组中查找特定整数的问题,提出了两种解法:简单遍历和优化算法。优化算法利用数组的递增特性,从右上角开始,通过比较目标值与当前元素,可以更快地定位目标,实现了O(n+m)的时间复杂度和O(1)的空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:二维数组中的查找

该题目中的这种矩阵被称为杨氏矩阵。 

题目描述:

在一个二维数组array中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

[

[1,2,8,9],
[2,4,9,12],
[4,7,10,13],
[6,8,11,15]

]

给定 target = 7,返回 true。

给定 target = 3,返回 false。

数据范围:矩阵的长宽满足 0≤n,m≤500 , 矩阵中的值满足 0≤val≤10^9
进阶:空间复杂度 O(1) ,时间复杂度 O(n+m)

示例1:

输入:7,[[1,2,8,9],[2,4,9,12],[4,7,10,13],[6,8,11,15]]

返回值:true

说明:存在7,返回 true

示例2:

输入:1,[[2]]

返回值:false

说明: 不存在1,返回false

思想:

这个题目可以用两种方法来解决,第一种就是简单的遍历查找,第二种是利用排除的方法。

方法一:按照我们平常的思路来做,拿到这道题的第一反应就是把这个二维数组遍历一遍

代码实现:

public class Solution {
    public boolean Find(int target, int [][] array) {
        for(int i = 0;i < array.length;i++){
            for(int j = 0;j < array[0].length;j++){
                if(target == array[i][j]){
                    return true;
                }
            }
        }
        return false;
    }
}

         这个题目的本质是查找,在这个二维数组中查找一个与 target 值相等的数,查找其实也是排除的过程,一次排除一个的效率肯定不如一次排除一批的效率高,方法二就是一次排除一批的这种方法。

方法二:从题目中可以看出,这个二维数组的每一行是从左到右递增的,每一列是从上到下递增的。就题目描述中的二维数组来举例:

代码实现:

public class Solution {
    public boolean Find(int target, int [][] array) {
        int i = 0;
        int j = array[0].length - 1;
        if(array == null){
            return false;
        }
        while(i < array.length && j >= 0){
            if(array[i][j] > target){
                j--;
            }else if(array[i][j] < target){
                i++;
            }else{
                return true;
            }
        }
        return false;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值