一、motif预测结果作用
随着高通量测技术发展,在研究DNA-蛋白/转录因子互作、蛋白-染色质互作、染色质开放可及性等领域涌出了如CHIP-seq、cut&tag-seq和ATAC-seq等二代测序技术。通过这些技术得到的数据分析中,motif预测分析扮演着举足轻重的角色,主要体现在以下几个方面:
-
识别转录因子结合位点(TFBS): Motif分析可以帮助识别特定转录因子的结合位点,这对于理解基因调控网络至关重要。在表观组学研究中,转录因子结合或DNA、RNA甲基化修饰存在一定的碱基偏好性,即它们倾向于出现在某些特定的碱基组合中。通过motif分析,可以挖掘这些修饰或结合的偏好,进而锁定相关基因,对后续的讨论和实验具有指导作用。
-
揭示基因调控机制: Motif分析有助于揭示基因表达调控的机制。通过识别特定序列模式,研究人员可以推断基因家族成员之间的关系,预测它们的功能和调控机制。
-
预测蛋白质功能: Motif分析可以用于预测蛋白质的功能。具有相同基序或结构域的蛋白质可以归为一大类,称为超家族。这些基序或结构域通常代表蛋白质结构中独立折叠和行驶功能的一部分。
-
基因调控网络构建: Motif分析在构建基因调控网络中具有重要应用。通过识别和分析DNA、RNA或蛋白质序列中的重复出现的模式或序列片段,研究人员可以构建基因调控网络,理解基因如何被调控以及它们在生物学过程中的作用。
-
疾病研究和药物靶点发现: Motif分析在疾病研究和药物靶点发现中也具有重要应用。通过识别与疾病相关的特定基因或蛋白质的motif,可以为疾病机理的研究和药物开发提供新的线索。
-
统计学意义的生物学基序提取: 在蛋白质组学实验中,Motif分析可以帮助从翻译后修饰位点周围提取具有统计学意义的生物学基序,这对于理解引起这些修饰的潜在生物学过程非常重要。
-
实验数据验证和功能注释: Motif分析可以通过实验数据或数据库中的已知motif进行验证,确保发现的motif具有生物学意义。此外,将发现的motif与基因功能、调控网络和生物学过程关联起来,以理解其生物学作用。
二、MEME-CHIP使用-网页版
-
MEME-CHIP网址
-
官网主页面
如下图所示:
参数介绍
- Motif预测和富集模式选择
经典模式(Classic mode) 提供一组序列,MEME-ChIP检测在该组序列中富集的基序。MEME发现相对于基于提供序列中字母频率的随机模型,或相对于可能提供的“背景模型”中的频率,在提供序列中富集的基序。
区分模式(Discriminative mode) 提供两组序列,MEME-ChIP报告在第一组(主要)序列相对于第二组(对照)序列中富集的基序。在区分模式下,MEME基序使用经典的MEME目标函数,并通过使用psp-gen从主要和对照序列创建位置特异性先验。注意:主要和对照集中的序列长度应该相同。
差异富集模式(Differential Enrichment mode) 提供两组序列,MEME-ChIP发现在第一组(主要)序列相对于第二组(对照)序列中富集的基序。在差异富集模式下,MEME基序的发现是基于超几何分布的目标函数,以确定主要序列中位点相对于对照序列的相对富集程度。
-
序列字母表-非标准序列文件时使用
如果提供的序列不是标准的DNA、RNA或蛋白质序列,则需要输入一个自定义的序列文件。自定义序列文件允许分析工具识别和处理非标准序列数据,这对于特殊类型的生物信息学分析尤为重要。在MEME-ChIP工具中,如果输入的序列不是标准的DNA、RNA或蛋白质序列,就需要提供这样一个文件来确保分析的准确性。自定义字母表文件通常包含了序列中出现的所有字符及其对应的编码,这样分析软件就可以正确地解析和比较序列数据。这对于研究非标准序列,如修饰后的核酸序列或特殊类型的蛋白质序列等,是非常有用的。
-
待分析的等长序列文件
提供每条序列的长度要求是相同的。对于ChIP-seq序列,推荐的序列长度是以峰值的顶点(如果顶点未知,则为中心)为中心的500个碱基对(bp)。MEME-ChIP最适合处理不超过2000个碱基对的序列。
FASTA格式下,主要序列最多可能有50万个。整个输入表单的内容也有80,000,000字节的限制。
MEME-ChIP可以分析由ChIP-seq识别的峰值区域、由CLIP-seq和相关实验识别的交联位点,以及根据其他标准(例如,差异表达或结合基因的转录起始位点TSS)选定的基因组区域集合。 -
已知motif序列的参考数据库
选择参考数据库作为motif背景集,MEME-ChIP将使用这组基序进行基序富集分析,并且还会报告在提供序列中发现的任何基序是否与这组基序中的任何基序相似。这意味着MEME-ChIP不仅会分析提供的序列集中的基序富集情况,还会将这些发现与已知的基序集合进行比较,以识别可能的相似性或匹配。这样的分析有助于揭示转录因子结合位点的潜在功能和调控网络,因为已知的基序往往与特定的生物学功能和调控机制相关联。通过这种比较,研究人员可以更好地理解他们的数据,并将其与现有的生物学知识相联系。
-
报告名称及结果接收邮箱
填写此次分析的报告名称,以及用来接收分析结果的邮箱信息。
-
其他参数
到此处的话,基本上上不用调整这些参数了,使用默认参数提交即可,如果对peak长度和输出motif数量有要求的,可在这里进行调整,此处不再赘述。
三、结果
四、后面有空再继续更新
如果有疑问,就@我,相互学习!