【GAMES101】Lecture 16 蒙特卡洛积分

本文介绍了微积分的基本概念,包括定积分和不定积分,并探讨了概率论在随机变量中的应用。重点讲解了蒙特卡洛积分的原理,作为一种计算复杂积分的数值方法,通过随机采样求解积分问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了后面要讲的路径追踪,需要讲一下这个蒙特卡洛积分,同时需要回顾一下高等数学中的微积分和概率论与统计学的知识 

目录

微积分

概念论与统计

蒙特卡洛积分


微积分

定积分是微积分中的一种重要概念,用于计算函数在一个区间上的总体积、总面积或总量,对于一个实函数 f(x),定积分可以表示为∫[a, b] f(x) dx,其中 [a, b] 是积分区间,f(x) 是被积函数,dx 表示与自变量 x 相关的微小增量

不定积分是微积分中的一种概念,用于求解函数的原函数(或称为反导函数),可以理解为找到一个函数 F(x),使得 F'(x) = f(x),其中 F'(x) 表示函数 F(x) 的导数,这个函数 F(x) 就是函数 f(x) 的不定积分

不定积分可以用来求解定积分的值:如果在一个区间上求出了函数 f(x) 的一个原函数 F(x),那么在该区间上的定积分 ∫[a, b] f(x) dx 就等于 F(b) - F(a)

概念论与统计

对于一个连续的随机变量X,它的取某个值的概率由概率分布函数给出,也就是PDF

根据概率的特性,概率p是非负的,而且PDF的积分等于1,该随机变量的数学期望可以通过xp(x)dx的积分得到

如果Y = f(X),那么Y的数学期望可以这样算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员萌芽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值