李宏毅机器学习第五节(自学)Transformer

本文介绍了Transformer模型在序列到序列(seq2seq)任务中的应用,包括语音识别、机器翻译等。详细解析了Encoder和Decoder的结构,强调了自注意力机制和残差连接的重要性,并探讨了Autoregressive与Non-autoregressive两种解码方式的差异。同时,解释了训练过程中的Teacher Forcing策略及其作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sequense to Sequence(seq2seq)

含义:所谓Seq2Seq(Sequence to Sequence),即序列到序列模型,就是一种能够根据给定的序列,通过特定的生成方法生成另一个序列的方法,同时这两个序列可以不等长。经常应用于输出的长度不确定时。

相关应用
1)语音辨识

输入是声音讯号的一串的vector,输出是语音辨识的结果,也就是输出的这段声音讯号,所对应的文字⇒输出的长度由机器自己决定,

2)机器翻译

输入的文字的长度是N,输出的句子的长度是N',那N跟N'之间的关系,也要由机器自己来决定

3)语音翻译

4)语音合成Text-to-Speech (TTS) Synthesis

输入一段文字,输出语音

5)Seq2seq for Chatbot聊天机器人

输入输出都是文字

利用人的对话进行训练

6)Question Answering (QA)

7)Seq2seq for S
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值