算法题解记录8+++爬楼梯(百日筑基)

题目描述:

        假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

        每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?        

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

解题准备:

        1.猜测该题可能涉及的基础操作:目前看不出来。

        2.拿特殊的题目尝试一下:

                可以发现,第一层台阶非常特殊,虽然题目提供两种操作,但是我们只能爬1步,因此只有1种方案。

            3.筛查题目条件:题目仅一个输入,表示有几层台阶。其为我们提供两个操作,一次爬升一楼,或一次爬升两楼。

            4.理解:假设我们想爬第n层台阶,要不从n-1层开始爬,要不从n-2层开始爬【除了n=1的情况,题目提供n>=1】

            5.猜测:由此可以猜测,想知道第n层台阶有几种爬法,极大可能和n-2,n-1这两层台阶有关。

解题难点1分析:

        虽然猜测n层台阶与n-1、n-2可能有关系,但是未证实,其难点,是找到关系内容。

        1:如何找到三者的关系?

                我们的目标是,找到爬n层的所有方案(虽然只要求给出方案的数目),假设采用穷举法。

                假设num【x】表示爬第x层的所有方案数目。(使x>2)【以下的所有数据,默认不超出限制】

                当n=x时,x-1到x,是一种方案,x-2到x,也是一种方案。忽略其它,单单最后一步,一共有两种方案。

                面对x-1,x-3到x-1可以走2步,x-2到x-1可以走1步。同样是两种方案。

                如果爬到x-1和x-2的所有方案num【x-1】和num【x-2】,之间没有重复的序列,就可以证明num【x】=num【x-1】+num【x-2】。

        2:如何证明:x-1和x-2,之间一定不存在重复?

                对于x-1,1st.如果x-1是从x-3直接跳到x-1,那么掠过x-2,不存在重复。【x-3到达x-2也是一个步骤】

                2nd.如果x-1,从x-2爬升到x-1,那么由于x-2到x-1多一步骤,故不重复。

至此证明完毕。

递归代码:

class Solution {
    public int climbStairs(int n) {
        if(n==1){
            return 1;
        }
        int[] data=new int[n];
        data[0]=1;
        data[1]=2;

        return helper(n-1, data);
    }

    private int helper(int temp, int[] data){
        if(temp==1){
            return 2;
        }else if(temp==0){
            return 1;
        }
        if(data[temp-1]>0&&data[temp-2]>0){
            return data[temp-1]+data[temp-2];
        }else if(data[temp-2]>0){
            return helper(temp-1, data)+data[temp-2];
        }else if(data[temp-1]>0){
            return helper(temp-2, data)+data[temp-1];
        }

        data[temp]=helper(temp-1, data)+helper(temp-2, data);
        return data[temp];
    }
}

以上内容即我想分享的关于力扣热题8的一些知识。

        我是蚊子码农,如有补充,欢迎在评论区留言。个人也是初学者,知识体系可能没有那么完善,希望各位多多指正,谢谢大家。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值