算法题解记录25+++验证二叉搜索树(百日筑基)

题目描述:

        难度:中等

        给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左

    子树

    只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true

示例 2:

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 10^4] 内
  • -2^31 <= Node.val <= 2^31 - 1

解题准备:

        1.题意:题目要求验证一棵二叉树,是不是二叉搜索树(BST,即Binary Search Tree),那么我们首先要知道,一棵二叉搜索树是什么样的。

        简单地说,BST有如下性质:第一,其左子树上所有节点的值,都小于根节点值;第二,其右子树上所有节点的值,都大于根节点的值。第三,BST下所有节点,都有BST的性质。

        2.基本操作:就题目看,不涉及增删改,验证必然要涉及查找遍历,姑且认为只有查找和比较。

        3.基础原理:面对树的题目,我们应敏锐地察觉到至少两种方法---BFS广度优先搜索和DFS深度优先搜索。这两种方法几乎是树的算法的基础,大多数算法,都是在二者之上优化而得。

解题思路:

        朴素地说,对于新手,其实一看到这个题目,是不会有什么思路的。

        然而,如果说做过一些题,就能直接得到答案,也非常夸张。

        我在此分享我的错误思路。

        错误思路---左右递归判断

                我最开始的思路比较简单,基于两个基本原理:

                第一,如果一棵树左子节点left的值,大于或等于根节点root的值,说明它不是BST。

                第二,如果一棵树右子节点right的值,小于或等于根节点root的值,说明不是BST。

                这两个原理没有错,却不完全,如果一棵树满足这两个原理,也有可能不是BST,比如下图,7大于5,却满足这个原理,同样,3小于5,也满足这个原理。

                这两个原理没有满足整体,所以我编写的代码在运行之后也报错了,不过,我会在下面提供代码。我先在此说明我的思考过程。【如何将这两个原理转化为代码的】

                第一步,有了原理,尽量往dfs或者bfs方法上靠近。

                第二步,发现判断一个节点是否满足2个原理,只需要判断left与root的关系、right与root的关系即可。【异常处理还没做】

                第三步,得到问题:虽然判断一个节点很简单,怎么判断下一个呢?

                第四步,初始的朴素思想:干脆中序遍历或前序遍历一遍,得到所有节点(存储List),依次进行判断?

                第五步,想到优化思路,既然中序遍历能够遍历每个节点,为什么要遍历一边,然后又从List再遍历一遍?

                第六步,中序原理是左根右,访问操作只在根节点做,那么继续左中右方法,把判断左子放在“左”,判断右子放在“右”,根节点的数据访问忽略了,就可以了。

                第七步,异常:访问到空节点null。

                第八步:if限制,null节点直接返回,又因为要判断子节点与根节点的关系,返回明显不能处理,所以需要额外判断子节点是否为null。

                完成。

        正确思路---中序遍历序列

                这个思路首先要明白一件事:中序遍历,其顺序是左子树、根节点、右子树。

                其中,在左子树left中,其顺序也是left的左子树、left、left的右子树。

                如果一棵树只有一个节点,毫无疑问它是升序的。

                假设这棵树root,它的左子树是left,右子树是right。

                那么,中序遍历时,一定会访问到left的最左子节点X,它是升序的。

                接着,访问最左子节点的父节点F,由于BST性质,最左子X小于F,所以是升序的。

                然后,访问F的右子【也有可能是右子的左子、右子的左子的左子……】P,由于BST性质,XFP升序排列。

                由于这棵树升序排列,那么,它的父树也升序排列,最后,left升序排列,整个节点的中序序列,都升序排列。

                由此,我们只需要得到中序序列,即可判断。

        正确思路---区间逼近

                这个思路是题解的思路,不过与我的错误思路非常接近,它把我的2个原理推进了。

                原理1:左子节点left,一定比root小,左子的左子,一定比root小;左子的右子,一定比root小,并且比左子大……

                原理2:右子节点right,一定比root大,右子的右子,一定比root大;右子的左子,一定比root大,并且比右子小。

                如此,我们可以发现,我的错误思路,就在于判断时,只是把节点与其左右子进行判断,忽略了最重要的根节点。

                然而,问题出现了:如果我们持续用root的值,作为判断依据,如下图:5作为右边所有节点的下限,没有问题,但是9却比7要大,也就是说子树7不符合BST的性质,所以整棵树不是BST。

                换句话说,我们要求上下限是不断变化的,这其实也是二叉树的精髓部分。

                怎么做呢?

                一般的想法是,维护两个变量low、up,使它们代表某个节点的上下限,在每次判断时作为依据。

                不过,如果这两个变量只是代表1个节点上下限,那么我们要开辟一个非常大的空间,用来存储所有的变量对low、up。

                所以,借助递归的方案,我们把维护变量对的操作交给系统,我们只需要递归调用时,传递变量对即可。

解题难点分析:

        无

错误代码---我的思路:

class Solution {
    public boolean isValidBST(TreeNode root) {
        boolean flag = true;
        // 为null不判断
        if(root.left!=null){
            if(root.left.val>=root.val){
                return false;
            }
            flag = isValidBST(root.left);
        }
        // 看一下是否不是BST
        if(!flag){
            return flag;
        }
        // 同理
        if(root.right!=null){
            if(root.right.val<=root.val){
                return false;
            }
            flag = isValidBST(root.right);
        }

        return flag;
    }
}

代码---中序遍历:

class Solution {
    public boolean isValidBST(TreeNode root) {
        // 存储节点
        List<Integer> data = new ArrayList<>();
        fuzhu(root, data);
        // 依次判断
        for(int i=0; i<data.size()-1; i++){
            if(data.get(i) >= data.get(i+1)){
                return false;
            }
        }

        return true;
    }

    private void fuzhu(TreeNode root, List<Integer> data){
        if(root==null){
            return;
        }

        fuzhu(root.left, data);
        data.add(root.val);
        fuzhu(root.right, data);
    }
}

代码---迭代上下限:

class Solution {
    public boolean isValidBST(TreeNode root) {
        return fuzhu(root, Long.MIN_VALUE, Long.MAX_VALUE);
    }

    private boolean fuzhu(TreeNode root, long low, long up){
        // 如果是空节点,即正确 
        if(root==null){
            return true;
        }
        
        // 如果超出界限,则错误
        // 我们可以看出来,每次递归判断,只能判断一个节点,我们不可能一起判断左子和右子
        if(root.val <= low || root.val >= up){
            return false;
        }

        // 返回左子节点、右子节点的判断。
        return fuzhu(root.left, low, root.val) && fuzhu(root.right, root.val, up);
    }
}

以上内容即我想分享的关于力扣热题25的一些知识。

        我是蚊子码农,如有补充,欢迎在评论区留言。个人也是初学者,知识体系可能没有那么完善,希望各位多多指正,谢谢大家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值