Pytorch:梯度(神经网络的核心)

本文详细解析梯度的定义及其在寻找函数极小值中的关键作用,通过实例讲解如何使用梯度下降法,并列举常见函数的梯度计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、梯度的定义公式:

梯度是一个向量(但是微分是标量),其中\partial f/\partial x就是偏导数(也叫偏微分)

2、如何利用梯度求一个极小值?

\theta_{t+1}=\theta _{t}-\alpha _{t}*\bigtriangledown f\left ( \theta _{t} \right )

其中\alpha _{t}是一个参数,一般设置比较小,例如0.001。

3、常见函数的梯度:

其他函数同理,即求偏导数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值