小土堆 Dataset

该博客展示了如何使用PyTorch的`torch.utils.data.Dataset`类创建自定义数据集。通过定义`__init__`和`__getitem__`方法,可以轻松获取每个数据样本及其对应的标签。同时,`__len__`方法用于获取数据集的长度。示例中创建了两个数据集分别对应ants和bees,并将它们合并为训练数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Dataset类:提供了一种方式去获取数据及其label

  • 主要应用:
    • 如何获取每一个数据和对应的label
    • 如何获取数据的长度

 导入

from torch.utils.data import Dataset

 os.path.join 对路径进行拼接。
os.listdir() 返回指定的文件夹包含的文件名字的列表。

​
#展示Dataset类的用法:提供了一种获取数据的和对应label的方式
""""
    1.如何获取每一个数据及其label
    2.获取数据的长度
"""
from torch.utils.data import Dataset  #引入对应的package
import os
from PIL import Image #图片操作的package

class MyData(Dataset):#建立一个类,要继承Dataset类
#root_dir是train的相对地址 label_dir是ants
    def __init__(self,root_dir,label_dir):
        self.root_dir=root_dir
        self.label_dir=label_dir
        self.path=os.path.join(self.root_dir,self.label_dir)
        self.img_path=os.listdir(self.path)

    def __getitem__(self,idx):
        img_name=self.img_path[idx]
        img_item_path=os.path.join(self.root_dir,self.label_dir,img_name)
        img=Image.open(img_item_path)
        label=self.label_dir
        return img,label
    def __len__(self):
        return len(self.img_path)

root_dir="hymenoptera_data/train"
ants_label_dir="ants"
bees_label_dir="bees"
ants_dataset=MyData(root_dir,ants_label_dir)
bees_dataset=MyData(root_dir,bees_label_dir)
train_dataset=ants_dataset+bees_dataset
img,label=ants_dataset[0]
#img.show()
print(len(train_dataset))



​

### 小土堆数据集概述 小土堆的数据集通常被用来作为初学者练习机器学习模型构建的基础资源之一。这类数据集中常见的例子包括 `ant` 和 `bee` 的图像分类数据[^2],其目的是帮助新手理解如何加载、预处理以及训练简单的神经网络模型。 #### 数据集获取方式 对于希望使用该类数据集进行实践的用户来说,可以从公开的资料库或者教程配套文件中下载相关内容。例如,在 PyTorch 快速入门课程中提到的小土堆数据集可以通过官方文档或其他共享平台找到对应的链接地址[^1]。具体而言: - **Dataset 加载**:通过继承自 `torch.utils.data.Dataset` 类来自定义数据读取逻辑,并完成对原始图片及其标签的一系列转换操作。 ```python from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_dataset = datasets.ImageFolder(root='path_to_data', transform=transform) ``` 这里展示了创建一个基于文件夹结构存储图像样本实例的方法,其中路径需替换为实际存放 ant/bee 文件的位置。 #### TensorBoard 可视化支持 为了更好地监控训练过程中的各项指标变化情况,可以引入 TensorBoard 工具辅助分析。它允许记录每次迭代后的损失值或者其他感兴趣的统计量以便后续绘图展示[^3]。 ```python from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() for epoch in range(num_epochs): writer.add_scalar('Loss/train', loss.item(), epoch) writer.close() ``` 以上代码片段说明了向日志目录写入标量信息的基本流程,其中包括指定图表名称 (`tag`)、当前步数(`global_step`) 以及对应的实际数值(`scalar_value`)。 ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值