Apache IoTDB 全场景部署:基于 Apache IoTDB 的跨「端-边-云」的时序数据库 DB+AI

Apache IoTDB 全场景部署:基于 Apache IoTDB 的跨「端-边-云」的时序数据库 DB+AI


在这里插入图片描述

Apache IoTDB 介绍

在这里插入图片描述

Apache IoTDB 专为物联网场景打造的高性能轻量级时序数据库,以 “设备 - 测点” 原生数据模型贴合物理设备与传感器关系,通过高压缩算法、百万级并发写入能力和毫秒级查询响应优化海量时序数据存储成本与处理效率,同时支持边缘轻量部署、云端集群扩展及边缘 - 云端协同,为工业物联网、智能城市、车联网等场景提供全生命周期的数据存储、查询与分析解决方案

物联网原生优化:采用 “设备 - 测点” 数据模型,完美映射物理设备与传感器关系,配合标签机制支持多维度分析,贴合物联网实际业务场景

极致性能表现:通过特殊编码算法实现 10:1~20:1 的高压缩率,同时支持每秒数百万条数据的并发写入和毫秒级时序查询响应,平衡存储成本与处理效率

全场景部署能力:轻量设计可运行于边缘设备,分布式架构支持云端集群扩展,兼容边缘 - 云端协同存储,适配从边缘到云端的全场景物联网部署需求

Docker部署指导

1、Docker安装

#以ubuntu为例,其他操作系统可以自行搜索安装方法
#step1: 安装一些必要的系统工具
sudo apt-get update
sudo apt-get -y install apt-transport-https ca-certificates curl software-properties-common
#step2: 安装GPG证书
curl -fsSL https://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add -
#step3: 写入软件源信息
sudo add-apt-repository "deb [arch=amd64] https://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable"
#step4: 更新并安装Docker-CE
sudo apt-get -y update
sudo apt-get -y install docker-ce
#step5: 设置docker开机自启动
sudo systemctl enable docker
#step6: 验证docker是否安装成功
docker --version  #显示版本信息,即安装成功

2、docker-compose安装

#安装命令
curl -L "https://github.com/docker/compose/releases/download/v2.20.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
ln -s  /usr/local/bin/docker-compose  /usr/bin/docker-compose
#验证是否安装成功
docker-compose --version  #显示版本信息即安装成功

3、安装dmidecode插件(dmidecode 安装后,查找安装路径:whereis dmidecode,这里假设结果为/usr/sbin/dmidecode,记住该路径,后面的docker-compose的yml文件会用到)

sudo apt-get install dmidecode

4、load 镜像文件

docker load -i iotdb-enterprise-1.3.2.3-standalone-docker.tar.gz

5、查看镜像

docker images

6、创建docker bridge网络

docker network create --driver=bridge --subnet=172.18.0.0/16 --gateway=172.18.0.1  iotdb

7、编写docker-compose的yml文件

docker-iotdb:
├── iotdb  #iotdb安装目录
│── docker-compose-standalone.yml #单机版docker-compose的yml文件

8、完整的docker-compose-standalone.yml内容如下

version: "3"
services:
  iotdb-service:
    image: timecho/timechodb:2.0.2.1-standalone #使用的镜像
    hostname: iotdb
    container_name: iotdb
    restart: always       
    ports:
      - "6667:6667"
    environment:
      - cn_internal_address=iotdb
      - cn_internal_port=10710
      - cn_consensus_port=10720
      - cn_seed_config_node=iotdb:10710
      - dn_rpc_address=iotdb
      - dn_internal_address=iotdb
      - dn_rpc_port=6667
      - dn_internal_port=10730
      - dn_mpp_data_exchange_port=10740
      - dn_schema_region_consensus_port=10750
      - dn_data_region_consensus_port=10760
      - dn_seed_config_node=iotdb:10710
    privileged: true
    volumes:
        - ./iotdb/activation:/iotdb/activation
        - ./iotdb/data:/iotdb/data
        - ./iotdb/logs:/iotdb/logs
        - /usr/sbin/dmidecode:/usr/sbin/dmidecode:ro
        - /dev/mem:/dev/mem:ro
    networks:
      iotdb:
        ipv4_address: 172.18.0.6
networks:
  iotdb:
    external: true

9、首次启动

cd /docker-iotdb
docker-compose -f docker-compose-standalone.yml up

在这里插入图片描述

10、申请激活

在这里插入图片描述

11、再次启动IoTDB

docker-compose -f docker-compose-standalone.yml up  -d

在这里插入图片描述

12、验证部署(查看日志,有如下字样,表示启动成功)

docker logs -f iotdb-datanode #查看日志命令
2024-07-19 12:02:32,608 [main] INFO  o.a.i.db.service.DataNode:231 - Congratulations, IoTDB DataNode is set up successfully. Now, enjoy yourself!

在这里插入图片描述

13、查看启动的容器

docker ps
  • 进入容器, 通过cli登录数据库, 使用show cluster命令查看服务状态及激活状态
docker exec -it iotdb   /bin/bash        #进入容器
./start-cli.sh -h iotdb                  #登录数据库
IoTDB> show cluster                      #查看状态

在这里插入图片描述

企业版数据库配套工具 Workbench

在这里插入图片描述

TimechoDB 企业版配套工具 Workbench 通过可视化界面简化数据库管理流程,降低操作门槛;支持高效 SQL 编写与图表化结果展示,助力数据查询分析;提供数据导入导出、备份恢复及权限管理保障数据流转安全;实时监控运行指标并给出优化建议,全面提升企业对 TimechoDB 的管理效率、数据分析能力与运行稳定性

可视化简化管理:通过图形化界面替代复杂命令行操作,轻松完成数据库创建、表结构设计等基础管理任务,大幅降低操作门槛与失误概率

高效分析赋能决策:支持智能 SQL 编写与语法检查,结合图表化结果展示,快速挖掘数据趋势与异常,为企业决策提供直观数据支撑

安全稳定全保障:覆盖数据导入导出、备份恢复等流转需求,搭配权限管理与实时性能监控,确保数据安全完整与数据库高效运行

TimechoDB(based on Apache IoTDB)

TimechoDB 国产自研高性能时序数据库,核心团队源于清华大学,自主研发积累深厚,多项发明专利与顶会论文为技术支撑,通过工信部信创测评,适配信创生态,性能经 TPx - IoT 国际榜单验证达国际领先水平 ,成本把控上大幅降低存储与运维成本,借助云边协同节省网络带宽、接收端 CPU 等资源;原厂团队提供企业级技术支持与可视化工具,提升使用便捷性;超 40 项国产 CPU、OS 兼容认证,集成多类大数据系统,构建稳定全流程方案,助力各行业高效运用时序数据

端边云数据协同:支持设备端、边缘、云端数据高效流转,适配多场景部署,实现数据分层处理与协同管理

性能无瓶颈:高并发写入(百万级设备)、低延迟查询,经存储与编码优化,平衡读写性能与成本

智能 AI 分析:内置时序大模型(本地微调 / 推理),配 70 + 时序 UDF 函数,覆盖数据处理到智能分析全流程

稳定安全:分布式架构保障高可用,结合权限、加密机制,满足工业场景数据安全与业务连续性需求

运维便捷:可视化工具 + 简化部署,支持集群监控、故障诊断,降低工业环境运维门槛

Apache IoTDB 应用场景

在这里插入图片描述

Apache IoTDB 凭借物联网原生设计、高性能存储与全场景部署能力,在多领域有广泛应用,核心场景包括:

  • 钢铁冶炼:借高并发写入采集冶炼设备、产线实时数据,用高效时序查询分析温度、压力等参数,助力工艺优化、故障预警
  • 能源电力:存储发电、输电设备时序数据,经聚合查询分析能耗、设备状态,支撑节能调度、安全监测,保障生产可持续
  • 交通运输:接入车辆、交通设施数据,凭低延迟查询实现智能调度、故障预警,借时序分析优化路线,提升运维效率
  • 航空航天:精准采集飞行关键系统遥测数据,靠高压缩、快速写入存试飞数据,为监测分析、实时回传提供数据支撑
  • 物联网:适配边缘与云端,以轻量架构、高效存储管理设备数据流,保障数据实时、稳定,支撑系统扩展与多场景应用

总结

在这里插入图片描述

本文聚焦 Apache IoTDB 及企业版 TimechoDB 的核心价值:其原生模型贴合物联网场景,高压缩、高并发性能攻克海量时序数据存储与实时处理难题,边缘轻量部署与云端集群扩展实现全场景适配。通过 Docker 快速部署、Workbench 可视化工具降低操作门槛,叠加内置时序 AI 模型与 UDF 函数,为开发者提供从数据采集、存储到智能分析的全链路高效解决方案,加速多行业物联网业务落地。

👉下载链接
👉企业版官网链接

<think>嗯,用户现在问的是关于“AI智能+智慧社区可视化平台”的代码。首先,我需要回顾之前的对话历史,看看用户之前问了什么。之前用户已经了解了智慧社区可视化大屏的功能特点、管理效率提升和实际案例,现在他们可能想进一步了解技术实现,尤其是代码层面的内容。 用户可能的需求是什么?他们可能是开发者或者技术决策者,想要自己搭建类似的平台,或者了解背后的技术架构。需要明确用户的技术背景,但根据问题本身,可能希望得到具体的代码示例或技术实现细节。 接下来,我需要考虑如何组织回答。用户之前的回答结构比较系统化,分为功能特点、管理效能提升、案例等,所以这次可能需要类似的结构,但侧重于技术实现和代码。可能需要分模块介绍,比如数据采集、AI算法、可视化、平台集成等,并给出代码片段示例。 用户可能希望看到具体的技术栈,比如Python、TensorFlow、Django、ECharts等。同时,要确保代码示例符合他们的需求,比如数据处理的代码、机器学习模型训练、可视化组件的实现等。 另外,需要注意用户可能对系统架构感兴趣,所以可能需要描述整体架构图,比如分层的架构(数据层、AI层、应用层等),并用代码示例展示各个部分。 还需要考虑用户可能的疑问,比如如何实时处理数据,如何集成AI模型,如何保证系统的可扩展性等。因此,在代码示例中应该包含数据处理、模型训练、API接口、前后交互等部分。 最后,要确保回答清晰,结构合理,代码示例正确且易于理解,同时结合之前的分析,突出AI在智慧社区中的应用,比如异常检测、预测模型等,并说明代码如何支持这些功能。</think>以下是一个基于AI智能的智慧社区可视化平台技术实现方案及核心代码框架示例: --- ### 一、系统架构设计(Python技术栈) ```python # 系统架构分层 class SmartCommunitySystem: def __init__(self): self.data_layer = DataProcessing() # 数据层 self.ai_layer = AIModels() # AI算法层 self.viz_layer = Visualization() # 可视化层 self.api_layer = APIIntegration() # 接口层 def workflow(self): # 数据流示例 raw_data = self.data_layer.collect_iot_data() processed_data = self.data_layer.clean_data(raw_data) ai_results = self.ai_layer.predict(processed_data) self.viz_layer.render_dashboard(ai_results) ``` --- ### 二、核心模块代码实现 #### 1. 物联网数据采集(Python + MQTT) ```python import paho.mqtt.client as mqtt class IoTDataCollector: def __init__(self): self.client = mqtt.Client() self.client.connect("iot.broker.com", 1883) self.client.on_message = self.on_message def on_message(self, client, userdata, msg): """实时接收传感器数据""" payload = json.loads(msg.payload) # 处理多源数据:温度、人脸识别、设备状态等 if msg.topic == "sensors/temperature": self.process_temp_data(payload) elif msg.topic == "camera/entrance": self.process_face_data(payload) def process_temp_data(self, data): # 异常温度检测(示例) if data['value'] > 38: alert = {"type": "temperature", "location": data['node'], "value": data['value']} self.send_alert(alert) ``` --- #### 2. AI智能分析模块(PyTorch + OpenCV) ```python import torch from torchvision import models class CommunityAI: def __init__(self): # 加载预训练模型 self.face_recog = models.resnet50(pretrained=True) self.abnormal_behavior_detector = torch.load('abnormal_detect.pth') def detect_anomaly(self, video_stream): """异常行为检测""" # 使用3D CNN处理视频流 frames = preprocess_video(video_stream) with torch.no_grad(): predictions = self.abnormal_behavior_detector(frames) return torch.argmax(predictions, dim=1).cpu().numpy() def predict_energy_usage(self, historical_data): """LSTM能源预测""" lstm_model = torch.nn.LSTM(input_size=5, hidden_size=64) inputs = torch.tensor(historical_data).float() output, _ = lstm_model(inputs.view(len(inputs), 1, -1)) return output[-1].item() ``` --- #### 3. 可视化大屏核心组件(ECharts + Vue.js) ```javascript // 三维社区地图组件 export default { mounted() { this.initEcharts() }, methods: { initEcharts() { const chart = echarts.init(this.$refs.mapContainer) // 地理信息数据绑定 echarts.registerMap('community', communityGeoJSON) const option = { geo3D: { map: 'community', shading: 'realistic', itemStyle: { areaColor: '#1e90ff', opacity: 0.8 }, emphasis: { label: { show: true, formatter: function(params) { return `${params.name}\n入住率: ${communityData[params.name].occupancy}%` } } } }, series: [ { type: 'scatter3D', coordinateSystem: 'geo3D', data: this.deviceStatusData, symbolSize: 12, encode: { tooltip: [0, 1, 2] } } ] } chart.setOption(option) } } } ``` --- ### 三、关键技术实现 #### 1. 多模态数据融合处理 ```python class MultiModalProcessor: def fuse_data(self, text, image, sensor): # 使用Transformer进行模态特征融合 fusion_model = Transformer( d_model=512, nhead=8, num_encoder_layers=6 ) text_feat = self.text_encoder(text) image_feat = self.image_encoder(image) sensor_feat = self.sensor_encoder(sensor) fused = fusion_model(text_feat, image_feat, sensor_feat) return fused ``` --- #### 2. 实时决策引擎 ```python class DecisionEngine: def make_decision(self, event_type, severity): # 基于强化学习的决策模型 state = self.get_current_state() q_values = self.dqn_model.predict(state) action = np.argmax(q_values) # 执行对应操作 if action == 0: self.dispatch_security() elif action == 1: self.activate_emergency_protocol() return action ``` --- ### 四、部署架构示例 ```yaml # Docker-Compose 部署配置 services: ai-engine: image: tensorflow/serving:latest ports: - "8500:8500" volumes: - ./models:/models visualization: image: nginx:1.21 ports: - "80:80" volumes: - ./dist:/usr/share/nginx/html data-processor: image: apache/flink:1.14 command: flink run -d /jobs/data-pipeline.jar ``` --- ### 五、核心算法示例(社区安防) ```python # 基于YOLOv5的异常物品检测 def detect_suspicious_objects(img): model = torch.hub.load('ultralytics/yolov5', 'yolov5s') results = model(img) alerts = [] for obj in results.pandas().xyxy[0].iterrows(): if obj['name'] in ['knife', 'gun', 'unattended_bag']: alerts.append({ 'object': obj['name'], 'confidence': obj['confidence'], 'location': (obj['xmin'], obj['ymin']) }) return alerts ``` --- ### 六、数据流处理(Apache Flink) ```java // 实时人流统计 DataStream<SensorData> input = env.addSource(new MQTTDataSource()); input .keyBy("areaId") .window(TumblingProcessingTimeWindows.of(Time.minutes(5))) .process(new ProcessWindowFunction<SensorData, AreaDensity, String, TimeWindow>() { public void process(String key, Context ctx, Iterable<SensorData> data, Collector<AreaDensity> out) { int count = 0; for (SensorData d : data) { count += d.getPeopleCount(); } out.collect(new AreaDensity(key, count / 300.0)); // 人/平方米 } }); ``` --- 该代码框架实现了以下核心功能: 1. 物联网设备的实时数据采集与异常检测 2. 基于深度学习的多模态数据分析(视频、传感器、文本) 3. 三维可视化大屏的动态数据呈现 4. 强化学习驱动的智能决策系统 5. 微服务化部署架构 典型技术栈组合: - **前**:Vue3 + ECharts GL + Three.js - **后**:FastAPI + Flask + Django Channels - **AI框架**:PyTorch + TensorFlow Lite + OpenVINO - **数据库**:TimescaleDB时序数据) + Neo4j(关系网络) - **基础设施**:Kubernetes + EdgeX Foundry(缘计算) 实际开发中需要根据具体硬件环境(如是否使用NVIDIA Jetson缘设备)和社区规模进行性能优化,典型优化手段包括模型量化(使用INT8精度)、视频流分级传输、-协同计算等。
评论 102
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wei_shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值