EEG Emotion Recognition Using DynamicalGraph Convolutional Neural Network

本文探讨了使用动态图卷积神经网络(DGCNN)进行EEG情感识别,以克服传统CNN和GCNN在处理离散空间信号时的局限性,特别是针对脑电图信号中不同通道间功能关系的学习。DGCNN通过自适应学习邻接矩阵,提高了情绪识别的判别力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

情感识别在人机交互中起着重要的作用[1],它使机器能够感知人类的情感状态,从而使机器在人机交互中更加 "有同情心"。
态,从而使机器在人机互动中更有 "同情心"。基本上,情感识别方法可以分为 分为两类。第一类是基于非生理信号的,比如面部表情图像[2]。
[3], [4], [5], [6], 身体姿态[7], 和语音信号[8]。第二种是基于生理信号,如脑电图(EEG)[9],肌电图(EMG)[10]。和心电图(ECG)[11]。在各种类型的生理信号中,EEG信号是最常用的信号之一。它是直接从大脑皮层采集的,因此它在反映人类的精神状态方面是很有优势的。反映人类的精神状态。随着干式脑电图电极技术和脑电图信号处理方法的迅速发展,随着干式EEG电极技术和EEG信号处理方法的快速发展,EEG情感识别在最近几年受到越来越多的关注。
近年来受到越来越多的关注[12]。[13], [14], [15].基本上,有两种主要方式来描述人类的
16],即离散的基本情绪描述方法和维度方法。对于离散的基本情绪描述方法,情绪被划分为一组离散的状态,例如,六种基本情绪(即快乐、悲伤、惊讶、恐惧、愤怒和厌恶) [17]。与离散的情绪描述方法不同。维度方法以连续的形式来描述情绪,其中情绪的特点是由三个维度(价值、唤醒和支配)[18], [19]或简单的两个维度(价位和唤醒),其中价位维度主要表征积极程度或消极程度,而唤醒维度旨在描述情绪的兴奋或冷漠程度。
将EEG信号应用于情绪识别的研究可以追溯到Musha等人在[20]中的工作。在过去的几十年里,许多机器学习和信号被提出来处理EEG的情感识别[21], [22]。一个典型的EEG情绪识别方法 方法通常由两个主要部分组成,即鉴别性的EEG特征提取和情绪分类。基本上,用于情绪识别的EEG特征可以 一般分为两种,即时域特征和频域特征。和频域特征类型。时域特征如Hjorth特征[23]、分形维度特征 [24]和高阶交叉特征[25],主要捕捉脑电图的时间信息。
捕捉脑电信号的时间信息。不同于与时域特征不同,频域特征的目的在于频域特征旨在从频率角度捕捉EEG的情绪信息。最常用的频域特征提取方法之一是将EEG信号分解为若干个频段,如 信号分解成几个频段,如d段

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值