目录
torch.nn.functional.softmax(input, dim)
torch.multinomial(input, num_samples)
idx.index_copy(dim, index, source)
一、模型初始化
代码地址,首先模型初始化,确定模型属性
class LLaMA(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
assert config.padded_vocab_size is not None
self.config = config
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
ln_f=RMSNorm(config.n_embd),
)
)
self.rope_cache: Optional[RoPECache] = None
self.mask_cache: Optional[MaskCache] = None
self.kv_caches: List[KVCache] = []
config
确定模型参数,config使用默认的LLaMAConfig类
class LLaMAConfig:
block_size: int = 2048
vocab_size: int = 32000
padded_vocab_size: Optional[int] = None
n_layer: int = 32
n_head: int = 32
n_embd: int = 4096
def __post_init__(self):
if self.padded_vocab_size is None:
self.padded_vocab_size = find_multiple(self.vocab_size, 64)
@classmethod
def from_name(cls, name: str) -> Self:
return cls(**llama_configs[name])
llama_configs = {
"7B": dict(n_layer=32, n_head=32, n_embd=4096),
"13B": dict(n_layer=40, n_head=40, n_embd=5120),
"30B": dict(n_layer=60, n_head=52, n_embd=6656),
"65B": dict(n_layer=80, n_head=64, n_embd=8192),
}
对于所有类型的网络,不变的超参数为:
block_size: 模型处理的最大文本块的大小为2048。
vocab_size: 词汇表的大小,即模型能识别的词汇总数为32000。
padded_vocab_size经过find_multiple函数确定,用于确保词汇表大小是指定数值(64)的倍数
vocab_size=32000/64=500,词汇表大小是指定数值(64)的倍数
NLP 面试八股:“Transformers / LLM 的词表应该选多大?“ 学姐这么告诉我答案_训练时词表大小多少合适-CSDN博客
padded_vocab_size为32000
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
根据网络的参数量不同,模型层数、维度和自主意力头数不同:选择7B模型的情况下,
n_layer: 模型的层数。32
n_head: 自注意力机制中的头数。32
n_embd: 词嵌入的维度或隐藏层的维度。4096
lm_head
线性层:输入维度为4096,输出维度为32000,没有偏置
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
transformer
nn.ModuleDict():和python字典一样存在键值对,可根据key选取网络
包括有嵌入层wte,隐藏层h和归一化层ln_f
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
ln_f=RMSNorm(config.n_embd),
)
)
wte
嵌入层生成词向量,输入维度为填充后词典的大小padded_vocab_size(32000),输出维度为词嵌入维度n_embd(4096)
h
nn.ModuleList():可以通过迭代的方式创建网络,和list的用法一致
有n_layer(32)层网络块Block
其中网络块Block,包括前后两层归一化层RMSNorm,一层自主意力层CausalSelfAttention和一层线性层MLP
class Block(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
self.rms_1 = RMSNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.rms_2 = RMSNorm(config.n_embd)
self.mlp = MLP(config)
rms_1/rms_2
RMSNorm 详解三种常用标准化 Batch Norm & Layer Norm & RMSNorm_layernorm rmsnorm-CSDN博客
Llama改进之——均方根层归一化RMSNorm-CSDN博客
BatchNorm是对一个 batch 单个特征的所有样本做归一化
LayerNorm是对单个样本的所有特征做归一化
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization.
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
"""
def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
super().__init__()
self.scale = nn.Parameter(torch.ones(size))
self.eps = eps
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
# NOTE: the original RMSNorm paper implementation is not equivalent
# norm_x = x.norm(2, dim=self.dim, keepdim=True)
# rms_x = norm_x * d_x ** (-1. / 2)
# x_normed = x / (rms_x + self.eps)
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
x_normed = x * torch.rsqrt(norm_x + self.eps)
return self.scale * x_normed
attn
CausalSelfAttention
首先声明嵌入层/隐藏层可以被注意力头数整除
包括c_attn层、c_proj层
注意力头数n_head(32),隐藏层维度n_embd(4096) ,最大文本块的大小block_size(2048)
c_attn
Q,K,V对应的线性层,输入维度为隐藏层维度n_embd(4096),输出维度为3倍的隐藏层维度n_embd(4096)*3分别对应Q,K,V,没有偏置
c_proj
当前模块Block的输出映射,输入维度为隐藏层维度n_embd(4096),输出维度为隐藏层维度n_embd(4096),没有偏置
线性层mlp
hidden_dim(4*4096=16384) ,n_hidden(int(2 * hidden_dim / 3)=10922)
判断是否能被256整除,对n_hidden进行修正,(n + k - (n % k))结果为11008
两个全连接层输入维度为4096,输出维度为11008
映射层输入维度为11008,输出维度为4096
class MLP(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
hidden_dim = 4 * config.n_embd
n_hidden = int(2 * hidden_dim / 3)
n_hidden = find_multiple(n_hidden, 256)
self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False)
self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False)
self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
x = self.c_proj(x)
return x
ln_f
为RMSNorm,归一化维度为n_embd(4096)
rope_cache
存储或缓存与RoPE(旋转位置编码)相关的数据。Optional[RoPECache]
表示它可以是 RoPECache
类型的对象,也可以是 None
self.rope_cache: Optional[RoPECache] = None
mask_cache
用于缓存与掩码相关的数据。Optional[MaskCache]
表示它可以是 MaskCache
类型的对象,也可以是 None
。
self.mask_cache: Optional[MaskCache] = None
kv_caches
用于存储多个 KVCache
类型的缓存对象,初始化为空列表
self.kv_caches: List[KVCache] = []
二、tokenizer
tokenizer初始化
class Tokenizer:
"""Tokenizer for LLaMA."""
def __init__(self, model_path: Path) -> None:
self.processor = SentencePieceProcessor(model_file=str(model_path))
self.bos_id = self.processor.bos_id()
self.eos_id = self.processor.eos_id()
self.pad_id = self.processor.pad_id()
tokennizer.encoder
tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device)
def encode(
self,
string: str,
bos: bool = True,
eos: bool = False,
max_length: int = -1,
pad: bool = False,
device: Optional[torch.device] = None
) -> torch.Tensor:
tokens = self.processor.encode(string)
if bos:
tokens = [self.bos_id] + tokens
if eos:
tokens = tokens + [self.eos_id]
if max_length > 0:
tokens = tokens[:max_len