AI大模型学习笔记|神经网络与注意力机制(逐行解读)

来源分享链接:通过网盘分享的文件:详解神经网络是如何训练的
链接: https://pan.baidu.com/s/12EF7y0vJfH5x6X-0QEVezg 提取码: k924
内容摘要:本文深入探讨了神经网络与注意力机制的基础,以及神经网络参数训练的过程。以鸢尾花数据集为例,详细讲解了通过反向传播算法调整网络权重和偏置以最小化损失函数的方法。讨论涵盖了权重初始化、损失函数定义、选择优化器、前向传播和反向传播,以及模型性能评估。特别强调了从线性函数到多分类问题时,使用Softmax函数和交叉熵损失函数进行优化的重要性。本文细致讲解机器学习模型原理及其实现过程对初学者的必要性,确保模型在训练和测试集上的表现,并讨论了模型收敛的判断标准,旨在鼓励深入理解机器学习的核心概念。
备注:学习使用并不商用,若有侵权联系删除。

(1)神经网络和Attention机制参数训练过程详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

封印师请假去地球钓鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值