【协同任务】VFH算法多无人机协同控制技术【含Matlab源码 1999期】

本文介绍了VFH*算法在机器人导航中的应用,通过建立向量场直方图搜索树,利用A*算法找到代价最低的路径。在Matlab中实现了VFH*算法,并给出了部分源代码。实验表明,ds取机器人的直径,ng取传感器量程/ds时,算法效果最佳。此外,文章提及VFH*算法与VFH+算法的关系,并展示了算法的示意图和运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

⛄一、VFH*算法简介

在机器人的每个位置,建立相应的向量场直方图,得到若干个初始候选方向,VFH将沿每个候选方向前进的后果考虑进去。对每个候选方向,首先估算出机器人沿该方向前进一段距离ds后的新位置,然后以该位置为中心,再建立新的向量场,对新的向量场继续分析得到若干候选方向,如此继续下去,重复ng次,就建立了一个深度为ng的搜索树。最后使用A算法,找出一条路径,使根结点到某一个叶子结点的代价最低,则这条路径上的初始候选方向即为我们选定的下一步前进方向。

实验证实,ds取为机器人的直径,ng取为INT(传感器量程/ds)时效果最好。由分析可知,当ds取为活动窗口大小,ng取为1的时候,VFH算法即退化为VFH+算法。VFH+算法是VFH算法的一种特殊情况。

搜索树上的每个结点都有一个代价值。代价值的定义为f©=g©+h©。相应的每个符号的定义如下:

对于初始候选方向c0
在这里插入图片描述
对于第i层结点的候选方向ci

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值