【CapSA三维路径规划】卷尾猴搜索算法无人机避障三维航迹规划【含Matlab源码 3359期】

本文介绍了卷尾猴搜索算法(CapSA)在无人机三维路径规划中的应用,特别是在无人机避障三维航迹规划的问题上。文章详细阐述了无人机的基本约束、飞行环境障碍物和威胁区建模,以及目标函数。通过模拟卷尾猴的觅食行为,CapSA算法具有高度并行、自适应调整和鲁棒性强等特点,适合解决复杂问题。部分源代码展示了如何在MATLAB中实现该算法,最终得出无人机的无碰撞可行航迹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⛄一、白鲸算法无人机避障三维航迹规划简介

1 无人机航迹规划问题的数学模型
建立三维航迹规划问题的数学模型时, 不但考虑无人机基本约束, 还考虑复杂的飞行环境, 包括山体地形和雷暴威胁区。

1.1 无人机基本约束
规划的无人机三维航迹, 通常需要满足一些基本约束, 包括最大转弯角、最大爬升角或下滑角、最小航迹段长度、最低和最高飞行高度, 以及最大航迹长度等约束。其中, 最大转弯角约束, 是指无人机只能在水平面内小于或等于指定的最大转弯角内转弯;最大爬升角或下滑角约束, 是指无人机只能在垂直平面内小于或等于指定的最大爬升角或下滑角内爬升或下滑;最小航迹段长度约束, 要求无人机改变飞行姿态之前, 按目前的航迹方向飞行的最短航程;最低和最高飞行高度约束, 要求无人机在指定的飞行高度区间飞行;最大航迹长度约束, 是指无人机的航迹长度小于或等于指定的阈值。

记q (x, y, z, θ, ψ) 为无人机的飞行位置与姿态, 其中, (x, y, z) 为无人机的位置, θ为无人机的水平转弯角, ψ为无人机的竖直爬升角或下滑角, 进而建立上述基本约束的数学表达式。
在这里插入图片描述
1.2 飞行环境障碍物和威胁区建模
在飞行环境中, 高耸的山体近似采用圆锥体等效表示, 用以e为底的自然指数图形生成, 那么, 山体地形可以通过多个位置不同的圆锥体叠加而成。若将参考海拔基准高度设