人工智能之优化器算法|最优化问题是计算数学中最为重要的研究方向之一。而在深度学习领域,优化算法的选择也是一个模型的重中之重。

一、优化算法

最优化问题是计算数学中最为重要的研究方向之一。而在深度学习领域,优化算法的选择也是一个模型的重中之重。即使在数据集和模型架构完全相同的情况下,采用不同的优化算法,也很可能导致截然不同的训练效果。优化算法可以分成一阶优化和二阶优化算法,其中一阶优化就是指的梯度算法及其变种。

二、优化算法通用框架

优化算法通用框架:

首先定义待优化参数 W,目标函数 Loss(W),初始学习率 α,每次迭代一个 batcℎ。

然后开始进行迭代优化。对训练数据每个批次:

(1)计算 t 时刻损失函数关于当前参数的梯度:

(2)根据历史梯度计算 t 时刻一阶动量和二阶动量:

(3)计算 t 时刻的下降梯度:

(4)根据下降梯度进行参数更新(计算 𝑡+1 时刻的参数) :

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小嘤嘤怪学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值