
机器学习
文章平均质量分 92
Frank牛蛙
陪我变强
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
R语言应用KNN、朴素贝叶斯、SVM实现手写数字识别
本文基于MNIST数据集,使用R语言中的K近邻(KNN)、朴素贝叶斯和支持向量机(SVM)算法实现手写数字分类任务,并对比了三者的性能差异。以下是实验的核心内容与结论。模型实现与评估包括KNN\SVM\贝叶斯实验表明,SVM在此任务中表现最优,其高准确率得益于RBF核处理高维数据和非线性模式的能力。KNN虽表现良好,但计算复杂度随数据量增长;朴素贝叶斯因强独立性假设受限,适合特征间相关性较低的场景。实际应用中,SVM可作为手写数字识别的首选模型,尤其在追求精度时。未来可进一步优化超参数(如SVM的核参数、原创 2025-02-05 11:47:51 · 862 阅读 · 1 评论 -
机器学习——期末复习 重点题归纳
机器学习期末复习原创 2024-11-15 20:42:26 · 1705 阅读 · 0 评论