题目描述
给定一个N行M列的01矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:
dist(A[i][j],A[k][l]) =|i-k|+|j-l|
输出一个N行M列的整数矩阵B,其中:
B[i][j]=min(1≤x≤N,1≤y≤M,A[x][y]=1)B[i][j]=min(1\leq x\leq N,1\leq y\leq M,A[x][y]=1)B[i][j]=min(1≤x≤N,1≤y≤M,A[x][y]=1){dist(A[i][j],A[x][y])}
即求与每个位置曼哈顿距离最近的1
N,M≤1000N,M \leq 1000N,M≤1000
输入描述:
第一行两个整数n,m。 接下来一个N行M列的01矩阵,数字之间没有空格。
输出描述:
一个N行M列的矩阵B,相邻两个整数之间用一个空格隔开。
示例1
输入
3 4 0001 0011 0110
输出
复制3 2 1 0 2 1 0 0 1 0 0 1
3 2 1 0 2 1 0 0 1 0 0 1
#include <bits/stdc++.h>
using namespace std;
const int N=1e3+10;
typedef pair<int,int> P;
int a[N][N];
int n,m;
char g[N][N];
void bfs()
{
queue<P> q;
memset(a,-1,sizeof a);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(g[i][j]=='1')
{
a[i][j]=0;
q.push({i,j});
}
}
}
int xy[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
while(!q.empty())
{
auto t=q.front();
q.pop();
q.size();
int x=t.first,y=t.second;
for(int i=0;i<4;i++)
{
int dx=x+xy[i][0];
int dy=y+xy[i][1];
if(dx>=0&&dx<n&&dy>=0&&dy<m&&a[dx][dy]==-1)
{
a[dx][dy]=a[x][y]+1;
q.push({dx,dy});
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(NULL);
cin>>n>>m;
for(int i=0;i<n;i++)
cin>>g[i];
bfs();
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
return 0;
}