矩阵距离。

本文介绍了一种解决01矩阵中每个元素到最近1的曼哈顿距离的方法。通过广度优先搜索(BFS)算法,从所有初始状态为1的位置开始遍历,逐步更新矩阵中其他位置的距离值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个N行M列的01矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:
dist(A[i][j],A[k][l]) =|i-k|+|j-l|
输出一个N行M列的整数矩阵B,其中:
B[i][j]=min(1≤x≤N,1≤y≤M,A[x][y]=1)B[i][j]=min(1\leq x\leq N,1\leq y\leq M,A[x][y]=1)B[i][j]=min(1≤x≤N,1≤y≤M,A[x][y]=1)⁡{dist(A[i][j],A[x][y])}
即求与每个位置曼哈顿距离最近的1
N,M≤1000N,M \leq 1000N,M≤1000

输入描述:

第一行两个整数n,m。
接下来一个N行M列的01矩阵,数字之间没有空格。

输出描述:

一个N行M列的矩阵B,相邻两个整数之间用一个空格隔开。

示例1

输入

3 4
0001
0011
0110

输出

复制3 2 1 0 2 1 0 0 1 0 0 1

3 2 1 0
2 1 0 0
1 0 0 1
#include <bits/stdc++.h>
using namespace std; 
const int N=1e3+10;
typedef pair<int,int> P;

int a[N][N];
int n,m;
char g[N][N]; 

void bfs()
{ 
	queue<P> q;
	memset(a,-1,sizeof a);
	for(int i=0;i<n;i++)
    { 
		for(int j=0;j<m;j++)
        { 
			if(g[i][j]=='1')
            {
				a[i][j]=0;
				q.push({i,j});
			}
		}
	}
	
	int xy[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
	while(!q.empty())
    { 
		auto t=q.front();
        q.pop();
        q.size();
		int x=t.first,y=t.second;
		for(int i=0;i<4;i++)
        {
			int dx=x+xy[i][0];
			int dy=y+xy[i][1];
			if(dx>=0&&dx<n&&dy>=0&&dy<m&&a[dx][dy]==-1)
            {
				a[dx][dy]=a[x][y]+1;
				q.push({dx,dy});
			}
		}
	}
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(NULL);
	cin>>n>>m;
	for(int i=0;i<n;i++) 
        cin>>g[i];
	bfs();
	for(int i=0;i<n;i++)
    {
		for(int j=0;j<m;j++)
        {
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值