基于yolov8预训练模型手势识别

1.环境安装

  • Python 3.7+
  • OpenCV

  • Numpy
  • Ultralytics

2.预训练模型

  •     Yolov8.pt
  • 3.数据集准备

    访问Roboflow网站,搜索Hand Gesture Recognition Object Detection Dataset (v6, 2023-03-18 4:44pm) by Lebanese University (roboflow.com),该数据集包含用于对象检测的 5 个手势类的 839 张图像:1,2,3,4,5. 在五个手指的帮助下,形成一个到五个数字的组合,并在这些带有相应标签的手势上训练对象检测模型。

  • 链接:

  • Hand Gesture Recognition Object Detection Dataset (v6, 2023-03-18 4:44pm) by Lebanese University

### 基于YOLOv8手势识别系统的免费资源 手势识别是一个多学科领域,涉及计算机视觉、机器学习以及深度学习技术的应用。对于基于YOLOv8手势识别系统,可以利用一些公开的数据集和预训练模型来构建解决方案。 #### 数据集推荐 1. **EgoHands Dataset**: 这一数据集专注于第一视角下的手部检测与分割任务,适用于手势识别的研究工作[^3]。 2. **Hand Gesture Recognition Dataset (HGRD)**: 提供了多种常见手势的标注图像集合,适合用于训练和验证手势分类模型[^4]。 #### 开源项目与工具包 - Ultralytics官方提供了YOLOv8的相关文档和支持材料,其中包括如何自定义目标检测的任务说明[^5]。通过调整网络结构或者微调权重参数,能够实现针对特定手势类别的高效预测功能。 #### 实现代码片段示例 下面展示了一个简单的Python脚本框架,该脚本加载了YOLOv8模型并对输入视频流中的帧执行推理操作: ```python from ultralytics import YOLO # 加载预先训练好的YOLOv8模型 model = YOLO('yolov8n.pt') def detect_gesture(frame): results = model(frame) # 对单张图片进行推断 boxes = results[0].boxes.xyxy.cpu().numpy() # 获取边界框坐标 return boxes if __name__ == "__main__": import cv2 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break detected_boxes = detect_gesture(frame) for box in detected_boxes: x_min, y_min, x_max, y_max = map(int, box) cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color=(0, 255, 0), thickness=2) cv2.imshow("Gesture Detection", frame) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 上述程序展示了如何实时捕获摄像头画面并应用YOLOv8完成基本的目标定位过程[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值