【数值优化之凸集与凸函数】

本文深入探讨了凸集与凸函数的理论,包括凸集的定义、仿射集、凸包、重要类型的凸集如超平面、球和锥等。此外,还介绍了凸函数的特性,如一阶和二阶条件,以及保凸运算、共轭函数和次梯度的概念。这些理论在优化计算和数学分析中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文参考书籍《最优化计算方法》,若侵权请联系删除

目录

1 凸集的相关定义

1.1 凸集、仿射集

1.2 凸组合、凸包 

1.3 重要的凸集

1.3.1 超平面与半空间

1.3.2 球、椭球、锥

​1.3.3 多面体

1.4 保凸运算

2 分离超平面定理

3 凸函数

3.1 凸函数、严格凸函数、强凸函数

3.2 一阶条件

3.3 二阶条件

4 保凸运算

5 共轭函数

6 次梯度


1 凸集的相关定义

1.1 凸集、仿射集

 可见仿射集一定是凸集,但是要注意凸集的边界是开还是闭

1.2 凸组合、凸包 

 同理可得仿射组合与仿射包

1.3 重要的凸集

1.3.1 超平面与半空间

可以通过降维的方式去理解超平面与半空间

1.3.2 球、椭球、锥
1.3.3 多面体

1.4 保凸运算

 2 分离超平面定理

3 凸函数

3.1 凸函数、严格凸函数、强凸函数

 强凸函数减去一个正定二次函数仍然是凸函数,强凸函数一定是严格凸函数,而当强凸参数为0时,则退化成凸函数

3.2 一阶条件

还可以用其梯度信息来判断是否是凸函数

f(y)\geq f(x)+\bigtriangledown f(x)^{T}(y-x)

其实也可以描述成凸函数始终在某一点切线的上方,也就可以通过任意一点的一阶近似得到可微凸函数的全局下界

还可以用梯度单调性来判断

(\bigtriangledown f(x)-\bigtriangledown f(y))^{T}(x-y)\geq 0

凸函数仅当其梯度为单调映射且定义域为凸集的时候

3.3 二阶条件

若函数的二阶梯度也就是嗨森矩阵是半正定的,此函数就是凸函数

4 保凸运算

5 共轭函数

共轭函数相当于是线性函数与原函数的最大差值,它是一系列y的凸函数的逐点上确界,所以共轭函数一定是凸函数 

6 次梯度

当一个函数在某点无法求梯度时,我们便引入次梯度

(1)函数是凸函数

(2)次梯度是一个集合,很多向量满足

(3)当函数可导时,梯度等于次梯度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无意2121

创作不易,多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值