
2022.10.20作业
竹轩sang
我想也许能帮上一些学弟学妹~?
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
问题 I: 算法5-3:带行向量的稀疏矩阵相乘(附加代码模式)
输入的第一行是两个整数r1和c1(r1原创 2022-10-26 23:35:50 · 853 阅读 · 5 评论 -
问题 G: 算法5-1:稀疏矩阵转置
稀疏矩阵的存储不宜用二维数组存储每个元素,那样的话会浪费很多的存储空间。所以可以使用一个一维数组存储其中的非零元素。这个一维数组的元素类型是一个三元组,由非零元素在该稀疏矩阵中的位置(行号和列号对)以及该元组的值构成。输入的第一行是两个整数r和c(r*c原创 2022-10-24 12:11:00 · 412 阅读 · 0 评论 -
问题 F: 三元组法表示的稀疏矩阵,计算每行非零元个数,行索引,每列非零元个数,列索引
给定一个三元组法表示的稀疏矩阵,计算每行非零元个数,行索引,每列非零元个数,列索引并输出。其中行索引,指的是该行起始位置在稀疏矩阵的值向量中的索引,同理,列索引,指的是该列起始位置在稀疏矩阵的值向量中的索引。输入第一行为稀疏矩阵的行数mu,第二行为稀疏矩阵的列数nu,第三行为稀疏矩阵的非零元个数tu,其中mu,nu,tu都是小于100的正整数。接下来tu行,每行包括空格分隔的3个整数,分别代表每个非零元的行、列、值。输出四个向量,分别是每行非零元个数,行索引,每列非零元个数,列索引。纯暴力解法,好在能过。原创 2022-10-24 00:25:54 · 660 阅读 · 0 评论 -
问题 E: 根据三元组输出稀疏矩阵
第一行为矩阵行数m,第二行为矩阵列数n,第三行为非零元个数t。m,n都为小于100的正整数,t为小于10000的非负整数。把非零元存入链表再逐一进行判断比对,感觉有点麻烦了,但暂时没想到更简便的方法。输入包括一组测试数据,对应三元组表示的稀疏矩阵。接下来t行为t个非零元的行、列、值,都是整数。给定三元组表示的稀疏矩阵,输出对应的矩阵。原创 2022-10-22 23:37:31 · 856 阅读 · 0 评论 -
问题 D: 稀疏矩阵转换成简记形式-附加代码模式
大部分元素是0的矩阵称为稀疏矩阵,假设有k个非0元素,则可把稀疏矩阵用k*3的矩阵简记之,其中第一列是行号,第二列是列号,第三列是该行、该列下的非元素的值。首先有一行两个整数n和m,表示矩阵的行数和列数。试编程读入一稀疏矩阵,转换成简记形式,并输出。接下来的n行,每行有m个数,表示该矩阵。按题目要求输出矩阵的简记形式。原创 2022-10-22 23:00:20 · 676 阅读 · 0 评论 -
问题 C: 稀疏矩阵类型判断
每组数据的第一行为正整数m和n,分别代表矩阵的行数和列数,接下来跟着m行,每行是空格隔开的n个整数。上三角:对角线及其右上方的元素非0,其它元素为0。下三角:对角线及其左下方的元素非0,其它元素为0。对输入的每组数据,输出矩阵类型对应的汉语拼音。输入一个稀疏矩阵,输出其类型。对称:沿对角线对称的元素非0且相等。空矩阵:所有元素都为0。原创 2022-10-22 20:49:52 · 391 阅读 · 0 评论 -
问题 B: 多维下标向一维下标的换算
多维数组的元素标识通常是用多维下标(i0, i1, i2, .., in-1),而多维数组以顺序方式存储在内存中,内存的地址空间是一维的,要操作多维数组就需要计算从多维下标向一维下标的换算。每一行由一组非负整数组成,第一个数是多维数组的维数n(2~11),从第二个数开始的n个数是从高维到低维每一维的维长(1~20),接着的n个数是一个n维下标。对每一个测试样例,计算给定多维下标按行优向顺序对应的一维下标,并输出这个一维下标的值。每个测试样例输出一行。输入的每一行为一个测试用例。原创 2022-10-22 20:50:36 · 940 阅读 · 0 评论 -
问题 A: 函数可变参数练习-附加代码模式
C和C++语言都支持在函数中使用数量不定的参数列表进行运算。本题使用附加代码模式,用一个简单的求和任务,让同学们练习可变参数的函数语法。代码框架如下所示,请补充完整,调试通过后,注释掉main函数代码再提交。main函数代码如下,会自动附加在同学们提交的代码后面。下面的示例程序演示了函数参数不定情况下的处理代码。原创 2022-10-22 11:59:43 · 308 阅读 · 0 评论