对撞双指针(五)有效三角形的个数

 611. 有效三角形的个数

给定一个包含非负整数的数组 nums ,返回其中可以组成三角形三条边的三元组个数。

示例 1:

输入: nums = [2,2,3,4]
输出: 3
解释:有效的组合是: 
2,3,4 (使用第一个 2)
2,3,4 (使用第二个 2)
2,2,3

示例 2:

输入: nums = [4,2,3,4]
输出: 4

一、暴力枚举

class Solution {
public:
    bool IsTriangle(int a, int b, int c)
    {
        if(a+b>c && a+c>b && b+c>a)     // 3、应该只需要判断俩边之和大于第三边
        {
            vector<int> arr = {a,b,c};
            sort(arr.begin(), arr.end());   // 出错点2、if判断里面下标写错
            if(arr[2]-arr[1]<arr[0] && arr[1]-arr[0]<arr[2] && arr[2]-arr[0]<arr[1])
            return true;
        }
        return false;
    }
    int triangleNumber(vector<int>& nums) { // 三个for循环暴力枚举
        int ret = 0;
        for(int i = 0; i < nums.size(); i++)
        {
            for(int j = i+1; j<nums.size(); j++)
            {
                for(int k = j+1; k<nums.size(); k++)
                {
                    if(IsTriangle(nums[i], nums[j], nums[k]))   // 出错点1、直接把ijk传参
                        ret++;
                }
            }
        }
        return ret;
    }
};

二、暴力枚举的改进

应该只需要判断俩边之和大于第三边,所以可以对俩边之差小于第三边进行优化掉

class Solution {
public:
    bool IsTriangle(int a, int b, int c)
    {
        if(a+b>c && a+c>b && b+c>a)     // 3、应该只需要判断俩边之和大于第三边
        {
            // vector<int> arr = {a,b,c};
            // sort(arr.begin(), arr.end());   // 出错点2、if判断里面下标写错
            // if(arr[2]-arr[1]<arr[0] && arr[1]-arr[0]<arr[2] && arr[2]-arr[0]<arr[1])
            return true;
        }
        return false;
    }
    int triangleNumber(vector<int>& nums) { // 三个for循环暴力枚举
        int ret = 0;
        for(int i = 0; i < nums.size(); i++)
        {
            for(int j = i+1; j<nums.size(); j++)
            {
                for(int k = j+1; k<nums.size(); k++)
                {
                    if(IsTriangle(nums[i], nums[j], nums[k]))   // 出错点1、直接把ijk传参
                        ret++;
                }
            }
        }
        return ret;
    }
};

三、算法的进一步优化

对于给定的三边长的三角形,可以将其边长进行排序,排序后较小的俩个边之和如果小于第三边,则就可以组成三角形。

那我们选择先对数组进行排序,然后从右边最大数开始,将其确定为c,那么问题就简化为在c之前寻找俩个数能够加和大于c。

显而易见了:1、固定位置c

                     2、然后对撞双指针在c的左区间来确定a、b位置。

再此基础上,我们发现如果下图这样的a、b位置加和肯定大于c,那么如果固定right,left左移根据单调性,他们的和一定会更大,所以我们不需要再进行从里面选,直接可以确定right-left种元组个数。

 当c确定下来之后,左右指针指向的元素萨之和只有俩中情况,要么大于c,要么小于c

当和大于c的时候,a之后的元素和b加起来均大于c(根据排序的单调性)

                              那么就有right-left种元祖满足关系,继而向左移动right

当和小于c的时候,需要移动left位置,让a变大才有可能满足a+b>c

 

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        // if(nums.size() < 3) return 0;
        int res = 0, n = nums.size();
        sort(nums.begin(), nums.end());
        for(int i = n-1; i > 1; i--)// 先固定最大的数c,从后往前
        {
            int left = 0, right = i-1; // 再固定最大的数之后,从它的左区间左右指针对撞确定另外俩个数a、b
            while(left < right)
            {
                if(nums[left]+nums[right] > nums[i])
                {
                    res += (right-left);
                    right--;
                }
                else
                    left++;
            }
        }
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值