示例 1:
输入:s = "babad" 输出:"bab" 解释:"aba" 同样是符合题意的答案。示例 2:
输入:s = "cbbd" 输出:"bb"提示:
1 <= s.length <= 1000
s
仅由数字和英文字母组成
中心扩展
一个for循环下,对每一个位置进行扩散处理,用left和right进行回文扩散,当到达一个合适结果时更新begin和len。要注意奇数和偶数个位置的俩种判断。
class Solution {
public:
string longestPalindrome(string s) {
int begin = 0, len = 0, n = s.size();
for(int i = 0; i < n; i++)
{
int left = i, right = i;
while(left >= 0 && right < n && s[left] == s[right])
{
left--;
right++;
}
注意此处的对于len更新时 leftright位置的判断
left和right已经来到了一个不合适的位置
到这里left和right区间的内部!!才是一个回文串,
if(right - left - 1 > len)
{
len = right-left-1;
begin = left+1;
}
left = i, right = i+1;
while(left >= 0 && right < n && s[left] == s[right])
{
left--;
right++;
}
if(right-left-1 > len)
{
len = right-left-1;
begin = left+1;
}
}
return s.substr(begin, len);
}
};
动态规划
#include <iostream>
#include <string>
#include <vector>
using namespace std;
class Solution {
public:
string longestPalindrome(string s) {
int n = s.size();
if (n < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i..j] 是否是回文串
vector<vector<int>> dp(n, vector<int>(n));
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < n; i++) {
dp[i][i] = true;
}
// 递推开始
// 先枚举子串长度
for (int L = 2; L <= n; L++) {
// 枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < n; i++) {
// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
int j = L + i - 1;
// 如果右边界越界,就可以退出当前循环
if (j >= n) {
break;
}
if (s[i] != s[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substr(begin, maxLen);
}
};