字符串(四)5. 最长回文子串 中等 中心扩展算法 bp

 5. 最长回文子串

 

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

中心扩展

一个for循环下,对每一个位置进行扩散处理,用left和right进行回文扩散,当到达一个合适结果时更新begin和len。要注意奇数和偶数个位置的俩种判断。

class Solution {
public:
    string longestPalindrome(string s) {
        int begin = 0, len = 0, n = s.size();
        for(int i = 0; i < n; i++)
        {
            int left = i, right = i;
            while(left >= 0 && right < n && s[left] == s[right])
            {
                left--;
                right++;
            }
            注意此处的对于len更新时 leftright位置的判断
            left和right已经来到了一个不合适的位置
            到这里left和right区间的内部!!才是一个回文串,
            if(right - left - 1 > len)
            {
                len = right-left-1;
                begin = left+1;
            }

            left = i, right = i+1;
            while(left >= 0 && right < n && s[left] == s[right])
            {
                left--;
                right++;
            }
            if(right-left-1 > len)
            {
                len = right-left-1;
                begin = left+1;
            }

        }
        return s.substr(begin, len);
    }
};

动态规划

#include <iostream>
#include <string>
#include <vector>

using namespace std;

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        if (n < 2) {
            return s;
        }

        int maxLen = 1;
        int begin = 0;
        // dp[i][j] 表示 s[i..j] 是否是回文串
        vector<vector<int>> dp(n, vector<int>(n));
        // 初始化:所有长度为 1 的子串都是回文串
        for (int i = 0; i < n; i++) {
            dp[i][i] = true;
        }
        // 递推开始
        // 先枚举子串长度
        for (int L = 2; L <= n; L++) {
            // 枚举左边界,左边界的上限设置可以宽松一些
            for (int i = 0; i < n; i++) {
                // 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
                int j = L + i - 1;
                // 如果右边界越界,就可以退出当前循环
                if (j >= n) {
                    break;
                }

                if (s[i] != s[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }

                // 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substr(begin, maxLen);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值