241124_基于MindSpore学习Prompt Tuning

241124_基于MindSpore学习Prompt Tuning

传统的NLP训练模式都是先在大量的无标注的样本上进行预训练,然后再使用有标注的样本进行有监督的训练,调整单一的线性成果而不是整个模型。

但在实际训练中发现,如果模型参数过大,在Fine Tune阶段成本较高。就是每次都要在一个参数很大的模型上进行微调。

于是产生了NLP的第四范式:不做Fine Tune,模型无监督训练好了就不改变了,而是给一些prompt

比如我要做一个情感分类,就先告诉他这是一个情感分类任务,然后再给具体任务

bert就是使用pre train和fine tune的模型,实现的目标是做类似于完形填空的任务和上下文联系任务

fine-tuning:通过改变模型结构,使模型适配下游任务

prompt learing:模型结构不变,通过重构任务描述,使下游任务适配模型

Prompt-Tuning步骤:

使用一个情感分类任务举例

构建模板:这一步是做完形填空的过程,比如I love this movies,拼接到原始文本中,获得Prompt-Tuning的输入:[I love this movies. overall, it was a [mask] movie]。这一步给模型模型就需要去填这个mask 的答案,模型会填进去很多可能的答案,每个答案对应一个分数,分数最高的是最后的答案。

标签词映射:在模型给出答案之后,比如模型给了个greet,因为我们是个情感分类任务,想要得到的结果只是两种,我们就要建立greet到positive的映射。如果是terrible,则认为是negative类。

Prompting中最主要的两个部分是template与verbalizer的设计

image-20241124182252723

template可以基于任务类型和预训练模型选择(shape)或生成方式(huamn effort)进行分类

打卡截图:

image-20241124183137330

### 开发基于大模型的聊天平台架构设计与实现方案 #### 1. 技术选型 为了构建高效、可扩展的聊天平台,可以采用华为云提供的全栈式AI解决方案。这包括昇腾(Ascend)/鲲鹏芯片作为硬件支持,昇思(MindSpore)编程语言用于算法开发以及ModelArts开发平台进行训练和部署[^1]。 #### 2. 平台架构概述 整个系统的架构应分为以下几个层次: - **前端层**:负责用户界面展示及交互操作。 - **服务层**:处理业务逻辑并调用后端API接口完成具体功能实现。 - **计算资源管理层**:管理GPU/CPU集群调度分配给不同任务使用。 - **存储系统**:保存历史会话记录及其他必要信息以便后续分析利用。 #### 3. 高效聊天机器人AI架构设计原则 根据目标受众的需求,在设计过程中需考虑如下几个方面来提升整体效率和服务质量: - 使用先进的多智能体(Multi-Agent)体系结构增强对话理解和生成能力, 同时也能够更好地适应复杂的实际应用场景需求 [^3]. - 结合Prompt Engineering技巧优化输入输出效果 , 包括但不限于指令调整(Instruct Tuning), 思维链条(Chain-of-Thought Reasoning)等策略 [^2]. 以下是简单的Python伪代码示例展示了如何初始化并与预训练好的GPT类LLM模型互动交流过程 : ```python from transformers import pipeline def initialize_model(): nlp_pipeline = pipeline("text-generation", model="gpt2") # 替换为你选择的具体型号名称 return nlp_pipeline def generate_response(prompt_text,model_instance): result=model_instance(prompt_text,max_length=50,min_length=10,num_return_sequences=1)[0]['generated_text'] return result if __name__ == "__main__": my_llm=initialize_model() while True: user_input=input('请输入您的问题:') bot_answer=generate_response(user_input,my_llm) print(f'助手回复:{bot_answer}') ``` 此脚本仅作为一个基础框架供参考学习之用,请依据项目实际情况做出相应修改完善后再投入使用生产环境当中去。 #### 4. 提升用户体验的关键要素 除了上述提到的技术层面之外,还需要关注其他影响最终成果的因素比如安全性考量(Prompt Attack Defense Mechanism),持续迭代改进机制等等 [^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值