改进极坐标表示(MPR)中AOA定位的特征空间解和偏置减少解(Matlab代码实现)

该文探讨了在多路径衰落环境中,基于三维角度-of-arrival(AOA)的定位方法,包括特征向量(EV)解和偏置减少(BR)解在Matlab中的实现。通过对不同场景的模拟,如噪声功率、传感器位置误差和源距离的影响,分析了这两种解的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

           目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

在MPR中基于三维AOA定位的两个代数解,称为特征向量(EV)解和偏置减少(BR)解。

📚2 运行结果

 

 

 

 

🎉3 参考文献

[1]马婧. 基于UWB信号的单基站定位算法研究及AOA定位研究[D].中国海洋大学,2013.

👨‍💻4 Matlab代码

主函数部分代码:

clear all; 
%clc;
warning off

% =========================================
%  im = 1: performance vs noise power (Figs. 3-6)
%  im = 2: perforamnce vs sensor position errors (Figs. 7-10)
%  im = 3: performance vs source range (Figs. 11-14)
% =========================================
im = 1;

% -- settings --
senPosTrue = [              % sensor positions
    0      0      0
    -13.1   22.3  -32.4
    34.6   44.4   15.5
    30.5  -29.4   18.4
    9.9   29.2   -8.4
    -7.4   48.0   -3.5
    4.5   -0.9   21.7
    -47.2   -7.3   29.1
    ]';
thetaSrc = 22.13*pi/180;    % source azimuth
phiSrc = 15.41*pi/180;      % source elevation

[N,M] = size(senPosTrue);

models = ['nse';'err';'rag'];

model = models(im,:);
switch model
    case 'nse'
        % ******* vs. noise power config, Fig. 3-6 *******
        nsePwr = -70:10:20;         % 10log(rad^2)
        srcRange = 200;             % m
        errLvl = -20;
    case 'err'
        % ******* vs. sensor position error level config, Fig. 7-10 *******
        nsePwr = -50;               % 10log(rad^2)
        srcRange = 200;             % m
        errLvl = -60:10:40;
    case 'rag'
        % ******* vs. range config, Fig. 11-14 *******
        nsePwr = -20;               % 10log(rad^2)
        srcRange = [20,50:50:800];  % m
        errLvl = -20;
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值