目录
💥1 概述
在MPR中基于三维AOA定位的两个代数解,称为特征向量(EV)解和偏置减少(BR)解。
📚2 运行结果
🎉3 参考文献
[1]马婧. 基于UWB信号的单基站定位算法研究及AOA定位研究[D].中国海洋大学,2013.
👨💻4 Matlab代码
主函数部分代码:
clear all;
%clc;
warning off
% =========================================
% im = 1: performance vs noise power (Figs. 3-6)
% im = 2: perforamnce vs sensor position errors (Figs. 7-10)
% im = 3: performance vs source range (Figs. 11-14)
% =========================================
im = 1;
% -- settings --
senPosTrue = [ % sensor positions
0 0 0
-13.1 22.3 -32.4
34.6 44.4 15.5
30.5 -29.4 18.4
9.9 29.2 -8.4
-7.4 48.0 -3.5
4.5 -0.9 21.7
-47.2 -7.3 29.1
]';
thetaSrc = 22.13*pi/180; % source azimuth
phiSrc = 15.41*pi/180; % source elevation
[N,M] = size(senPosTrue);
models = ['nse';'err';'rag'];
model = models(im,:);
switch model
case 'nse'
% ******* vs. noise power config, Fig. 3-6 *******
nsePwr = -70:10:20; % 10log(rad^2)
srcRange = 200; % m
errLvl = -20;
case 'err'
% ******* vs. sensor position error level config, Fig. 7-10 *******
nsePwr = -50; % 10log(rad^2)
srcRange = 200; % m
errLvl = -60:10:40;
case 'rag'
% ******* vs. range config, Fig. 11-14 *******
nsePwr = -20; % 10log(rad^2)
srcRange = [20,50:50:800]; % m
errLvl = -20;
end