CSP-J复赛集训200-300分必刷真题题单及拿分技巧(1)
[CSP-J2020] 优秀的拆分
题目描述
一般来说,一个正整数可以拆分成若干个正整数的和。
例如, 1 = 1 1=1 1=1, 10 = 1 + 2 + 3 + 4 10=1+2+3+4 10=1+2+3+4 等。对于正整数 n n n 的一种特定拆分,我们称它为“优秀的”,当且仅当在这种拆分下, n n n 被分解为了若干个不同的 2 2 2 的正整数次幂。注意,一个数 x x x 能被表示成 2 2 2 的正整数次幂,当且仅当 x x x 能通过正整数个 2 2 2 相乘在一起得到。
例如, 10 = 8 + 2 = 2 3 + 2 1 10=8+2=2^3+2^1 10=8+2=23+21 是一个优秀的拆分。但是, 7 = 4 + 2 + 1 = 2 2 + 2 1 + 2 0 7=4+2+1=2^2+2^1+2^0 7=4+2+1=22+21+20 就不是一个优秀的拆分,因为 1 1 1 不是 2 2 2 的正整数次幂。
现在,给定正整数 n n n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。若存在,请你给出具体的拆分方案。
输入格式
输入只有一行,一个整数 n n n,代表需要判断的数。
输出格式
如果这个数的所有拆分中,存在优秀的拆分。那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。
若不存在优秀的拆分,输出 -1
。
样例 #1
样例输入 #1
6
样例输出 #1
4 2
样例 #2
样例输入 #2
7
样例输出 #2
-1
提示
样例 1 解释
6 = 4 + 2 = 2 2 + 2 1 6=4+2=2^2+2^1 6=4+2=22+21 是一个优秀的拆分。注意, 6 = 2 + 2 + 2 6=2+2+2 6=2+2+2 不是一个优秀的拆分,因为拆分成的 3 3 3 个数不满足每个数互不相同。
数据规模与约定
- 对于 20 % 20\% 20% 的数据, n ≤ 10 n \le 10 n≤10。
- 对于另外 20 % 20\% 20% 的数据,保证 n n n 为奇数。
- 对于另外 20 % 20\% 20% 的数据,保证 n n n 为 2 2 2 的正整数次幂。
- 对于 80 % 80\% 80% 的数据, n ≤ 1024 n \le 1024 n≤1024。
- 对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 7 1 \le n \le {10}^7 1≤n≤107。
30分代码
#include <bits/stdc++.h>
using namespace std;
//拿部分分:根据题意,若不存在优秀的拆分,则输出-1
int n;
int main(){
cin>>n;
cout<<-1;
return 0;
}
60分代码
#include <bits/stdc++.h>
using namespace std;
//看数据范围,拿部分分
//1、20%的数据,n<=10
//2、20%的数据,n是奇数
//3、20%的数据,n是2的正整数次幂
int n;
int main(){
cin>>n;
//奇数
if(n%2==1){
cout<<-1;
return 0;
}
//小于等于10的偶数
if(n==2) cout<<2;
else if(n==4) cout<<4;
else if(n==6) cout<<4<<" "<<2;
else if(n==8) cout<<8;
else if(n==10) cout<<8<<" "<<2;
else{//n为2的整数次幂
cout<<n;
}
return 0;
}
100分代码
#include <bits/stdc++.h>
using namespace std;
//满分代码思路:从后往前遍历,将n拆成2的正整数次幂,将大问题划分为小问题
//关键点:pow函数的使用
int n;
int main(){
cin>>n;
if(n%2==1){
cout<<-1;
return 0;
}
for(int i=30;i>=1;i--){
int ans=pow(2,i);
if(ans<=n){
cout<<ans<<" ";
n-=ans;
}
}
return 0;
}
> 附详细题单:
> 附:csp比赛策略
> 附:csp比赛注意事项
文末彩蛋: