CSP-J复赛集训200-300分必刷真题题单及拿分技巧(1):[CSP-J2020] 优秀的拆分

CSP-J复赛集训200-300分必刷真题题单及拿分技巧(1)

[CSP-J2020] 优秀的拆分

在这里插入图片描述

题目描述

一般来说,一个正整数可以拆分成若干个正整数的和。

例如, 1 = 1 1=1 1=1 10 = 1 + 2 + 3 + 4 10=1+2+3+4 10=1+2+3+4 等。对于正整数 n n n 的一种特定拆分,我们称它为“优秀的”,当且仅当在这种拆分下, n n n 被分解为了若干个不同 2 2 2正整数次幂。注意,一个数 x x x 能被表示成 2 2 2 的正整数次幂,当且仅当 x x x 能通过正整数个 2 2 2 相乘在一起得到。

例如, 10 = 8 + 2 = 2 3 + 2 1 10=8+2=2^3+2^1 10=8+2=23+21 是一个优秀的拆分。但是, 7 = 4 + 2 + 1 = 2 2 + 2 1 + 2 0 7=4+2+1=2^2+2^1+2^0 7=4+2+1=22+21+20 就不是一个优秀的拆分,因为 1 1 1 不是 2 2 2 的正整数次幂。

现在,给定正整数 n n n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。若存在,请你给出具体的拆分方案。

输入格式

输入只有一行,一个整数 n n n,代表需要判断的数。

输出格式

如果这个数的所有拆分中,存在优秀的拆分。那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。

若不存在优秀的拆分,输出 -1

样例 #1

样例输入 #1

6

样例输出 #1

4 2

样例 #2

样例输入 #2

7

样例输出 #2

-1

提示

样例 1 解释

6 = 4 + 2 = 2 2 + 2 1 6=4+2=2^2+2^1 6=4+2=22+21 是一个优秀的拆分。注意, 6 = 2 + 2 + 2 6=2+2+2 6=2+2+2 不是一个优秀的拆分,因为拆分成的 3 3 3 个数不满足每个数互不相同。


数据规模与约定

  • 对于 20 % 20\% 20% 的数据, n ≤ 10 n \le 10 n10
  • 对于另外 20 % 20\% 20% 的数据,保证 n n n 为奇数。
  • 对于另外 20 % 20\% 20% 的数据,保证 n n n 2 2 2 的正整数次幂。
  • 对于 80 % 80\% 80% 的数据, n ≤ 1024 n \le 1024 n1024
  • 对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 7 1 \le n \le {10}^7 1n107

30分代码

#include <bits/stdc++.h>
using namespace std;  
//拿部分分:根据题意,若不存在优秀的拆分,则输出-1
int n; 
int main(){
	cin>>n;
	cout<<-1;
    return 0;
}

60分代码

#include <bits/stdc++.h>
using namespace std;  
//看数据范围,拿部分分 
//1、20%的数据,n<=10
//2、20%的数据,n是奇数
//3、20%的数据,n是2的正整数次幂
int n; 
int main(){
	cin>>n;
	//奇数 
	if(n%2==1){
		cout<<-1;
		return 0;
	}
	//小于等于10的偶数
	if(n==2) cout<<2;
	else if(n==4) cout<<4;
	else if(n==6) cout<<4<<" "<<2;
	else if(n==8) cout<<8;
	else if(n==10) cout<<8<<" "<<2;
	else{//n为2的整数次幂 
		cout<<n;
	}
    return 0;
}

100分代码

#include <bits/stdc++.h>
using namespace std;  
//满分代码思路:从后往前遍历,将n拆成2的正整数次幂,将大问题划分为小问题
//关键点:pow函数的使用
int n; 
int main(){
	cin>>n;
	if(n%2==1){
		cout<<-1;
		return 0;
	}
	for(int i=30;i>=1;i--){
		int ans=pow(2,i);
		if(ans<=n){
			cout<<ans<<" ";
			n-=ans;
		}	
	} 
    return 0;
}

> 附详细题单:
在这里插入图片描述

> 附:csp比赛策略
在这里插入图片描述

> 附:csp比赛注意事项
在这里插入图片描述

文末彩蛋:

点击王老师青少年编程主页有更多精彩内容

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王老师青少年编程

愿你所念皆如愿,一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值