无论是实体行业,还是电商,如何进行销售数据分析都是一个至关重要的问题。
当你拿到一堆数据和一个模糊的需求时,该用如何进行指标拆解?用哪种方法或公式进行分析计算?接下来我们就来具体来展开说明。
一、商品销售数据关键指标分析
做好商品销售数据分析的关键是要搭建分析指标体系。商品销售涉及到的数据指标非常多,因而要搭建数据分析指标体系并不容易。在这里主要介绍两类关键指标:
Part.01 GRM客户属性分析指标
GRM客户属性分析指标,本质是CRM(客户关系管理)体系中用于刻画和区分客户的“标签集合”。
具体包括以下:
1、客户基础属性分布:客户性别、年龄、地域、职业等基础信息统计。用来指导精准营销(如针对年轻女性主推潮流单品)
计算公式:分类占比 = 某类客户数 / 总客户数 ×100%。
2、客户复购率:一定周期内重复购买客户的占比,衡量客户忠诚度,低复购率需优化会员权益。
计算公式:复购率 = 复购客户数 / 总客户数 ×100%。
3、RFM模型:基于最近消费时间(Recency)、消费频次(Frequency)、消费金额(Monetary)的客户分层,识别高价值客户(如R低、F/M高的客户需重点维护)。
计算公式:对R/F/M分别打分后加权(如R=30%, F=30%, M=40%)。
4、VIP年度消费贡献率:在一定时段内,VIP贡献率=VIP消费额/市场销售总额X100%。如果数值在15%以上,则说明VIP发展与维护工作比较到位;反之,则存在VIP资源流失问题。
5、客户平均客单价:在一定时段内,VIP顾客平均每单消费的数额。
计算公式:平均客单价=VIP消费总额/VIP客单总数X100%。
6、客户平均客单数:在一定时段内,VIP顾客平均每单消费的商品件数。
计算公式:平均课单数=VIP消费总件数/VIP客单总数X100%。
7、客户时段到店率:某个时段所有VIP到店的次数/所有VIP全年到店的总次数X100%。
Part.02 销售分析关键指标
销售分析关键指标主要包括以下几方面:
1、销售额与销售量:总销售额 = ∑(单品售价 × 销量);总销售量 = ∑销量。它是核心业绩达成情况的直接反映。
2、客单价:平均每单消费金额,提升连带率(如搭配推荐)可优化客单价。
计算公式:客单价 = 总销售额 / 订单数。
3、连带率:平均每单购买商品件数,反映导购推荐能力,低连带率需培训话术。
计算公式:连带率 = 总销售件数 / 订单数。
4、客单价ATV:客单价=销售额/客单数
5、客单数UPT:客单数=销售件数/客单数
6、店铺动销率:店铺动销率=店铺动销SKU数/仓库总SKU数×100%
7、平效:店铺销售额/店铺销售平米数,即单位销售面积在单位时间内产生的销售额。
8、人效:店铺销售额/店铺员工编制数,即单位时间内店铺中每个员工的平均销售额。
9、时效:店铺销售额/店铺营业时间,即单位时间内平均每个小时产生的销售额。
总的来说,商品销售的数据指标虽然多,但只要抓住了关键和重点,其实分析起来并不难。
对于高手而言,通常只需要盯住以上提到的关键指标,如重点关注:
-
今天卖了多少?→ 销售额
-
卖得快不快?→ 库存周转天数
-
单品爆不爆?→ 转化率
-
利润厚不厚?→ 折扣率 × 客单价
-
风险在哪?→ 退货率最高的 TOP10 SKU
掌握了这些关键的商品销售数据指标,基本也就能做到对整体销售情况一览无余了!
二、商品销售常用的5个函数
1. VLOOKUP(垂直查找)
作用: 在一个表格或区域的第一列中搜索某个值,然后返回该区域同一行中指定列的值。
公式:
=VLOOKUP(lookup_value,table_array,col_index_num, [range_lookup])
例如:匹配产品信息,在 订单表
中,根据 产品ID
查找并显示出对应的 产品名称
和单价
。
公式 (在订单表的产品名称列):
=VLOOKUP(B2, 产品表!$A$2:$D$100, 2, FALSE)
2. SUMIFS (多条件求和)
作用: 根据一个或多个指定条件对区域中满足所有条件的单元格求和。
公式:
=SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
例如:计算特定月份特定类别的销售额:
你有销售明细表 (
销售表
),包含 日期
, 产品类别
, 销售金额,需求:
计算 2023 年 1 月份 "电子产品" 类别的总销售额。
公式:
=SUMIFS(C2:C1000, A2:A1000, ">=2023-01-01", A2:A1000, "<=2023-01-31", B2:B1000, "电子产品")
3. INDEX / MATCH (组合 - 灵活查找)
INDEX 作用: 返回表或区域中特定行和列交叉处单元格的值或引用。
公式:
=INDEX(array,row_num, [column_num])
MATCH 作用: 在指定区域内搜索指定项,然后返回该项在区域中的相对位置。
语法:
=MATCH(lookup_value,lookup_array, [match_type]) (通常match_type=0 精确匹配)
例如:双向查找 (查找某产品在某仓库的库存):
4. IFERROR (错误处理)
如果公式计算出错误则返回您指定的值;否则返回公式结果。用于优雅地处理公式可能出现的错误(如 #N/A, #VALUE!, #DIV/0!, #REF!, #NAME?, #NUM!, #NULL!),使报表更整洁。
基本语法:
=IFERROR(value, value_if_error)
例如:处理 VLOOKUP 找不到匹配项的错误:
5. TEXT(文本格式化)
将数值转换为按指定数字格式显示的文本。常用于自定义日期显示、数字格式(如添加千分位、固定小数位、百分比)、连接文本与格式化数值等。
基本语法:
=IFERROR(value, value_if_error)
例如:生成格式化的日期文本报告:
在搭建商品销售数据指标体系的基础上,再利用函数对数据快速进行处理和分析,就能帮助我们快速得出分析结论。
好的数据分析工具不仅能快速提升你的工作效率,而且还能帮助你更好地为企业决策提供数据支撑。CDA数据分析师证书,与CPA注会、CFA特许金融师并驾齐驱,其权威性与实用性不言而喻。在互联网行业中,应用数据分析是非常适配的,该行业数据量庞大、发展快。CDA数据分析师在互联网行业的数据岗中认可度非常高,一般都要求考过CDA数据分析师二级,CDA二级中包含了模型搭建的详细内容,对于数据岗的工作来说特别有帮助。
CDA数据分析师之所以备受青睐,离不开它广泛的企业认可度。众多知名企业在招聘数据分析师时,都会明确标注CDA持证人优先考虑。像是中国联通、德勤、苏宁等大型企业,更是将CDA持证人列为重点招募对象,甚至为员工的CDA考试提供补贴,鼓励他们提升数据处理与分析能力。这足以证明,CDA证书在求职过程中,能为你增添强大的竞争力,使你从众多求职者中脱颖而出。
CDA数据分析师在各个行业的数据岗中认可度非常高,一般都要求考过CDA数据分析师二级,CDA二级中包含了模型搭建的详细内容,对于数据岗的工作来说特别有帮助,一些企业可以给报销考试费。