01背包之一维数组解法

本文介绍了01背包问题的动态规划解法,从二维数组压缩到一维数组,详细解析了dp数组的含义、递推公式、初始化过程,并提供了C++实现的AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哈喽,大家好,这是我用CSDN写文章的第二天啦!

上篇文章和大家讲了一下用二维数组解01背包的方法,今天再和大家分享一下01背包一维数组的解法。

没看过上篇文章的建议先去看看上篇文章。

01背包做法_梨涡、浅笑 ོ的博客-CSDN博客

题目还是昨天那道题目:

【题目描述】

一个旅行者有一个最多能装 M 公斤的背包,现在有 n 件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn,求旅行者能获得最大总价值。

【输入】

第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30);

第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。

【输出】

仅一行,一个数,表示最大总价值。

【输入样例】

10 4
2 1
3 3
4 5
7 9

【输出样例】

12

关于【数据储存】、【算法分析】这两部分内容我在上篇文章已经分享了,感兴趣的可以先去看看。

【为什么可以用一维数组】

通过二维数组的递推公式dp[i][j]=max(dp[i-1][j],dp[i-1][j-s[i].w]+s[i].v)可以发现,每层数据都是由上一层得来的,所以可以压缩成一维数组。

【dp数组含义】

我们还是像用二维数组一样先来分析dp数组的含义。

二维dp数组中,dp[i][j]指的是第i件物品放进背包容量为j的背包里的最大价值。

现在压缩成一维数组后,dp[j]指的其实就是背包容量为j的背包的最大价值。

【递推公式】

二维数组的递推公式是dp[i]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值