萤火跑模型 | 高性能 Stable Diffusion 助力高质量 AI 绘图

本文介绍了Stable Diffusion在AI绘画中的应用,通过使用Latent Diffusion、Cross-Attention和Text-based Generation技术,实现高质量图像合成。文章详细讲述了模型的训练实践,包括使用Google Conceptual Caption数据集,以及通过萤火二号和hfai.pl插件进行训练优化,提升模型性能。最后,展示了训练结果和体验总结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Stable Diffusion

AI 绘画最近成功破圈,成了炙手可热的热门话题。DALLE,GLIDE,Stable Diffusion 等基于扩散机制的生成模型让 AI 作图发生质变,让人们看到了“AI 转成生产力”的曙光。

在这些扩散模型中,Stable Diffusion 以其优秀的效果和开源的权重成为了其中的代表,受到广泛的关注和体验。其基于 Laion5B 超大规模“文本 - 图像”对数据集,Stable AI 宣称用了 5000 张 A100 耗时几个月训练而成。幻方 AI 近期在萤火二号上使用 Google Caption 数据集复现了 Stable Diffusion 的训练,并进行了优化。通过幻方自研的 hfai.pl 插件将源代码 Pytorch Lightning 框架与萤火集群的特性轻松整合,并通过 3FShfreduce算子等优化工具对模型训练提速。

本文将分享我们对 Stable Diffusion 训练优化的心得体验,帮助研究者和开发者们降低研究门槛。

论文标题:High-Resolution Image Synthesis with Latent Diffusion Models

原文地址:https://arxiv.org/abs/2112.10752

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻方AI小编

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值