【电网预测】智能电网分布式模型预测控制的博弈论方法(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、分布式模型预测控制(DMPC)概述

三、博弈论方法在智能电网中的应用

四、研究内容与方法

五、研究结果与讨论

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

 智能电网分布式模型预测控制的博弈论方法是一种创新的技术手段,旨在优化智能电网的运行和管理。 智能电网面临着复杂的挑战,包括分布式能源的整合、需求的动态变化以及系统的稳定性和可靠性要求。分布式模型预测控制为解决这些问题提供了一种有效的途径。它将整个电网划分为多个子系统,每个子系统独立进行模型预测控制,以实现局部目标的优化。 博弈论方法在智能电网分布式模型预测控制中起着关键作用。通过将各个子系统视为博弈的参与者,它们在满足自身利益的同时,也需要考虑对整个电网系统的影响。博弈论可以帮助确定各个子系统之间的交互规则和策略,以实现全局最优解。 这种方法可以促进分布式能源的高效利用,实现电力的供需平衡,提高电网的稳定性和可靠性。它还可以适应不同的运行条件和需求变化,具有较强的灵活性和适应性。 总之,智能电网分布式模型预测控制的博弈论方法为智能电网的发展提供了新的思路和解决方案,有望在未来的能源领域发挥重要作用。

一、引言

智能电网作为未来能源系统的重要组成部分,具有高效、可靠、可持续等特点。随着能源需求的增长和可再生能源的整合,智能电网面临着复杂的优化问题,特别是在能源交易的成本控制和负载均衡方面。分布式模型预测控制(DMPC)结合博弈论方法为这一挑战提供了有效的解决方案。

二、分布式模型预测控制(DMPC)概述

分布式模型预测控制是一种基于分布式计算架构的预测控制方法。在DMPC中,系统模型被分解为多个子系统,并在每个子系统上进行局部优化,以实现全局系统的优化控制。这种方法特别适用于智能电网,其中大量的可控负载(如智能房屋)和电动车(EVs)需要协同工作以优化能源交易的成本和负载均衡。

三、博弈论方法在智能电网中的应用

博弈论作为对复杂系统代理之间相互作用进行建模的工具,已被广泛应用于智能电网中。在智能电网的分布式模型预测控制中,博弈论方法用于解决各个代理(如负载和电动车)之间的冲突和合作问题。通过引入大宗费率关税和批发定价政策,结合博弈论和MPC方法,可以设计分散控制器以降低充电成本和提供负载均衡服务。

四、研究内容与方法

  1. 系统建模:首先,建立智能电网的数学模型,包括可控负载、电动车和电网的动态行为。
  2. 子系统分解:将系统模型分解为多个子系统,每个子系统代表一个可控负载或电动车。
  3. 局部优化:在每个子系统上应用博弈论方法进行局部优化,以求解最优控制输入。
  4. 全局协调:通过通信网络将各个子系统的最优控制输入进行整合,以实现全局系统的优化控制。
  5. 仿真验证:使用MATLAB等仿真工具对提出的方法进行验证,评估其在智能电网调度与控制中的性能和效果。

五、研究结果与讨论

通过仿真实验,验证了分布式模型预测控制方法在智能电网中的有效性和性能。研究结果表明,该方法能够显著降低能源交易的货币成本,同时提供负载均衡服务。此外,该方法还考虑了每个代理的需求和约束,实现了智能电网的高效调度和控制。

六、结论与展望

本文提出了一种基于博弈论方法的智能电网分布式模型预测控制算法,并使用MATLAB进行了仿真验证。实验结果表明,该算法能够优化能源交易的成本,实现智能电网的高效调度和控制。未来,可以进一步改进算法,考虑更多的因素和约束条件,提高智能电网的性能和可靠性。

📚2 运行结果

主函数部分代码:

clc;
clear all;
close all;

addpath('/data'); 

Load = load('Load.mat');
Load = Load.BL(24:48);

% [Reulted Load Profile, Resulted Desicions] = Agg(a1,a2,#EVs,#Flexible Loads);
% Note that the best results, related to the simulations in the corresponding paper, %will be in hand in the case of having 10000 EVs and 10000 flexible loads.


[L_0_1_250,X_0_1_250] = Agg1(0,1,10,10);

[L_0_1_500,X_0_1_500] = Agg1(0,1,20,20);

[L_0_1_750,X_0_1_750] = Agg1(0,1,30,30);

[L_0_1_1000,X_0_1_1000] = Agg1(0,1,40,40);

[L_1_1_250,X_1_1_250] = Agg1(1,1,10,10);

[L_1_1_500,X_1_1_500] = Agg1(1,1,20,20);

[L_1_1_750,X_1_1_750] = Agg1(1,1,30,30);

[L_1_1_1000,X_1_1_1000] = Agg1(1,1,40,40);

[L_1_0_1000,X_1_0_1000] = Agg1(1,0,40,40);

[L_uncont,X_uncont] = Agg2(L_1_1_500,1,0,20,20);

Fig3_L = [L_1_0_1000;L_1_1_1000;L_0_1_1000]';

[Fig2,Fig3,Fig4] = Plot_Offline(Load,Fig3_L,L_0_1_250,L_0_1_500,L_0_1_750,L_0_1_1000,L_1_1_250,L_1_1_500,L_1_1_750,L_1_1_1000);

savefig(Fig2,'Fig2.fig');
savefig(Fig3,'Fig3.fig');
savefig(Fig4,'Fig4.fig');

figure(2);
openfig('Fig2.fig');
saveas(gcf, '../results/Fig2.png');

figure(3);
openfig('Fig3.fig');
saveas(gcf, '../results/Fig3.png')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]唐啸,项诗娴,房宇娇,等.基于TVF-EMD-SVM-GRU混合模型的短期电网负荷预测[J].电气自动化,2024,46(05):31-33+37.

[2]陈晓红,王泽深,吴超,等.基于长短期记忆网络的微电网分时负荷组合预测模型研究[J/OL].中国管理科学,1-12[2024-10-19].https://doi.org/10.16381/j.cnki.issn1003-207x.2023.1574.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值