AVL树介绍与构建

目录

AVL树的概念

二叉树的构建

平衡因子的更新

旋转

左单旋

旋转过程

左单旋代码

右单旋

旋转过程

右单旋代码

左右双旋

发生情况

抽象图

具体图

平衡因子更新

左右双旋代码

右左双旋

右左双旋旋代码

验证测试AVL树

测试成员函数

测试代码

AVL树实现代码

AVL树的删除(了解)

AVL树的性能


        在之前对map/multimap/set/multiset进行了简单的介绍,而这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现

AVL树的概念

一个高等平衡的二叉树

        二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年
发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。


一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

        ·它的左右子树都是AVL树
        ·左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

        如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O(log n),搜索时间复杂度O(log n)

二叉树的构建

参考文章:

平衡因子的更新

平衡因子更新规则

1、parent->_bf == 0说明之前parent->_bf 是 1 或者 -1说明之前parent一边高一边低,这次插入填上矮的那一边,parent所在的字数高度不变,不需要继续向上更新


2、parent->_bf == 1 或者 -1 说明之前parent->_bf == 0,两边一样高,现在插入一边更高了,parent所在子树高度变高了,继续往上更新


3、parent->_bf == 2 或者 -2,说明之前 parent->_bf == 1 或者 -1,现在插入严重不平衡,违反规则,就地处理 -- 旋转

旋转

根据AVL树概念可以得到以下的旋转规则

旋转规则:
        1、让这颗子树左右高度差不超过1
        2、旋转过程中继续保持他是搜索树
        3、更新调整孩子节点的平衡因子
        4、让这颗子树的高度跟插入前保持一致

左单旋

抽象图 

旋转过程

        需要注意的是,这里的旋转可能是指的是 子树 或者 整棵树,注意到第四条规则,保持让这颗子树的高度跟插入前保持一致,0的话就不需要继续向上更新,但是还是1或者-1的话就需要继续向上更新平衡因子了,假如又出现2的平衡因子那么就需要继续旋转,直到根节点

左单旋代码

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;	//父节点的右孩子
		Node* subRL = subR->_left;		//父节点的右孩子的左孩子

		parent->_right = subRL;
		if (subRL)						//如果subRL不为空,那么它的父节点更新为parent
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;	//保留父节点的父节点(因为这可能是一个子树)
		subR->_left = parent;			//更新subR的左孩子
		parent->_parent = subR;			//把之前的父节点更新为subR的左孩子

		if (ppNode == nullptr)	//假如ppNode为空,说明这是正棵树
		{
			_root = subR;				//更新root节点
			_root->_parent = nullptr;	//把它的父节点置为空
		}
		else      //否则就判断它是左还是右节点,再更新该旋转子树的父节点
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode; //新该旋转子树的父节点
		}

		parent->_bf = subR->_bf = 0;//旋转完这次操作那么就更新这俩子树的平衡因子
									//其他节点的平衡因子之所以不需要更新,是因为它们的子树并没有旋转,不受影响
	}

右单旋

抽象图

旋转过程

右单旋代码

	//右单旋 -- 原理同左单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;	//父节点的左孩子
		Node* subLR = subL->_right;	//父节点的左孩子的右孩子(可能为一棵子树)

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		//if (_root == parent); 这种写法也是一个道理
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}

		subL->_bf = parent->_bf = 0;
	}

左右双旋

发生情况

抽象图

具体图

平衡因子更新

这里是b插入,c插入大同小异

左右双旋代码

	//左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;	//记录父亲的左子树
		Node* subLR = subL->_right;//记录父亲的左子树的右子树
		int bf = subLR->_bf;	//记录subLR节点的平衡因子,便以判断插入在b(左子树)还是c(右子树)

		//先左旋转,再右旋转
		RotateL(parent->_left);
		RotateR(parent);

		//判断插入情况并更新平衡因子
		if (bf == -1)		//subLR左子树新增
		{
			subL->_bf = 0;	//这里的平衡因子在上面旋转的时候就已经更新了,但是为了不耦合单旋代码,特地在这里再进行一次更新
			parent->_bf = 1;//这里实际更新的(如果单旋正常工作)
			subLR->_bf = 0;	//正常更新平衡因子一定会为0
		}
		else if (bf == 1)	//subLR右子树新增
		{
			subL->_bf = -1;
			parent->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0)	//subLR自己就是新增的节点,单折线型
		{
			subL->_bf = 0;
			parent->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);	//程序出错
		}
	}

右左双旋

实际操作和左右双旋大致一样,这里是c插入

 

右左双旋旋代码

//右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		//先右旋转,再左旋转
		RotateR(parent->_right);
		RotateL(parent);

		//判断插入情况并更新平衡因子
		if (bf == -1)
		{
			subR->_bf = 1;
			parent->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			subR->_bf = 0;
			parent->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

验证测试AVL树

测试成员函数

int Height(Node* root)	//递归遍历高度
	{
		if (root == nullptr)
			return 0;

		int lh = Height(root->_left);
		int rh = Height(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}

	bool IsBalance()	//便以外面调用
	{
		return _IsBalance(_root);
	}

	bool _IsBalance(Node* root)	//判断是否平衡,这里我们不选择通过平衡因子判断是否平衡,因为平衡因子是我们自己更新的
	{
		if (root == nullptr)
		{
			return true;
		}

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)	//顺便测试平衡因子,并打印出异常地方
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}

		return abs(rightHeight - leftHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

测试代码

void TestAVLTree1()	//测试代码
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	
	t.Inorder();

	cout << t.IsBalance() << endl;
}

void TestAVLTree2()	//测试代码,随机数的检查
{
	srand((unsigned int)time(NULL));
	const size_t N = 10000;
	AVLTree<int, int> t;
	for (size_t i = 0; i < N; ++i)
	{
		size_t x = rand();
		t.Insert(make_pair(x, x));
		//cout << t.IsBalance() << endl;
	}

	t.Inorder();

	cout << t.IsBalance() << endl;
}

旋转总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋


2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
当pSubL的平衡因子为-1是,执行右单旋
当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新

AVL树实现代码

#pragma once
#include<iostream>
#include<assert.h>
#include<time.h>
using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf;	//balance factor 平衡因子

	AVLTreeNode(const pair<K, V>& kv)	//初始化
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

template<class K, class V>
struct AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)	//插入
	{
		if (_root == nullptr) //根节点为空就直接插入
		{
			_root = new Node(kv);
			return true;
		}

		//可以写成循环就用循环
		//找到插入的地方
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)	//小的放到左边,向左边走
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;	//插入失败
			}
		}

		//开始插入
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		//更新平衡因子
		while (parent)	//更新到根节点的时候停止
		{
			if (cur == parent->_left)	//左边新增,--
			{
				parent->_bf--;
			}
			else                      //右边新增,++
			{
				parent->_bf++;
			}

			//1、parent->_bf == 0说明之前parent->_bf 是 1 或者 -1
			//说明之前parent一边高一边低,这次插入填上矮的那一边,parent所在的字数高度不变,不需要继续向上更新
			//2、parent->_bf == 1 或者 -1 说明之前parent->_bf == 0,两边一样高,现在插入一边更高了
			//parent所在子树高度变高了,继续往上更新
			//3、parent->_bf == 2 或者 -2,说明之前 parent->_bf == 1 或者 -1,现在插入严重不平衡,违反规则
			//就地处理 -- 旋转

			//旋转:
			//1、让这颗子树左右高度差不超过1
			//2、旋转过程中继续保持他是搜索树
			//3、更新调整孩子节点的平衡因子
			//4、让这颗子树的高度跟插入前保持一致
			if (parent->_bf == 0)	//当平衡因子为0时停止跳出循环
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//二叉树有问题了需要 旋转解决
				//左单旋
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				//右单旋
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				//左右双旋
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				//右左双旋
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					assert(false);
				}

				break;
			}
			else
			{
				assert(false); //再有情况就直接断死,已经坏掉了(代码出错)
			}
		}

		return true;	//插入成功
	}

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;	//父节点的右孩子
		Node* subRL = subR->_left;		//父节点的右孩子的左孩子

		parent->_right = subRL;
		if (subRL)						//如果subRL不为空,那么它的父节点更新为parent
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;	//保留父节点的父节点(因为这可能是一个子树)
		subR->_left = parent;			//更新subR的左孩子
		parent->_parent = subR;			//把之前的父节点更新为subR的左孩子

		if (ppNode == nullptr)	//假如ppNode为空,说明这是正棵树
		{
			_root = subR;				//更新root节点
			_root->_parent = nullptr;	//把它的父节点置为空
		}
		else      //否则就判断它是左还是右节点,再更新该旋转子树的父节点
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode; //新该旋转子树的父节点
		}

		parent->_bf = subR->_bf = 0;//旋转完这次操作那么就更新这俩子树的平衡因子
									//其他节点的平衡因子之所以不需要更新,是因为它们的子树并没有旋转,不受影响
	}

	//右单旋 -- 原理同左单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;	//父节点的左孩子
		Node* subLR = subL->_right;	//父节点的左孩子的右孩子(可能为一棵子树)

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		//if (_root == parent); 这种写法也是一个道理
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}

		subL->_bf = parent->_bf = 0;
	}

	//左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;	//记录父亲的左子树
		Node* subLR = subL->_right;//记录父亲的左子树的右子树
		int bf = subLR->_bf;	//记录subLR节点的平衡因子,便以判断插入在b(左子树)还是c(右子树)

		//先左旋转,再右旋转
		RotateL(parent->_left);
		RotateR(parent);

		//判断插入情况并更新平衡因子
		if (bf == -1)		//subLR左子树新增
		{
			subL->_bf = 0;	//这里的平衡因子在上面旋转的时候就已经更新了,但是为了不耦合单旋代码,特地在这里再进行一次更新
			parent->_bf = 1;//这里实际更新的(如果单旋正常工作)
			subLR->_bf = 0;	//正常更新平衡因子一定会为0
		}
		else if (bf == 1)	//subLR右子树新增
		{
			subL->_bf = -1;
			parent->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0)	//subLR自己就是新增的节点,单折线型
		{
			subL->_bf = 0;
			parent->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);	//程序出错
		}
	}

	//右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		//先右旋转,再左旋转
		RotateR(parent->_right);
		RotateL(parent);

		//判断插入情况并更新平衡因子
		if (bf == -1)
		{
			subR->_bf = 1;
			parent->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			subR->_bf = 0;
			parent->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void Inorder()	//让外部调用内部的中序,因为外部不好传根节点,我们在内部调用可以解决这一点
	{
		_Inorder(_root);
	}

	void _Inorder(Node* root)	//内部的中序,对于排序好的二叉树来说,中序遍历刚好可以按照顺序遍历
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}

	int Height(Node* root)	//递归遍历高度
	{
		if (root == nullptr)
			return 0;

		int lh = Height(root->_left);
		int rh = Height(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}

	bool IsBalance()	//便以外面调用
	{
		return _IsBalance(_root);
	}

	bool _IsBalance(Node* root)	//判断是否平衡,这里我们不选择通过平衡因子判断是否平衡,因为平衡因子是我们自己更新的
	{
		if (root == nullptr)
		{
			return true;
		}

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)	//顺便测试平衡因子,并打印出异常地方
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}

		return abs(rightHeight - leftHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

private:
	Node* _root = nullptr;
};

void TestAVLTree1()	//测试代码
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	
	t.Inorder();

	cout << t.IsBalance() << endl;
}

void TestAVLTree2()	//测试代码,随机数的检查
{
	srand((unsigned int)time(NULL));
	const size_t N = 10000;
	AVLTree<int, int> t;
	for (size_t i = 0; i < N; ++i)
	{
		size_t x = rand();
		t.Insert(make_pair(x, x));
		//cout << t.IsBalance() << endl;
	}

	t.Inorder();

	cout << t.IsBalance() << endl;
}

AVL树的删除(了解)
 

        因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置,具体实现就不是AVL树的强项了,有兴趣可以自行学习

AVL树的性能


        AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log_2 (N)

        但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。

        因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风玉骨

爱了!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值