Prompt Tuning 是一种在自然语言处理(NLP)中应用于预训练大规模语言模型(如 GPT 系列)的技术,旨在通过调整输入的提示(Prompt)来帮助模型更好地完成下游任务,而不需要大规模的参数更新。与传统的微调方法相比,Prompt Tuning 主要关注如何通过设计和优化提示(包括软提示和硬提示)来完成任务。
在 Prompt Tuning 相关的研究中,P-Tuning V1 和 P-Tuning V2 是两种重要的改进版本,它们基于 Prompt Tuning 方法,但在具体实现上有所不同。
一、Prompt Tuning 方法
Prompt Tuning 通常分为两类:
-
硬提示(Hard Prompting):人工设计的固定文本,用来引导模型进行特定任务。这种方法是手动的,模型无法在任务中学习如何生成提示。
-
软提示(Soft Prompting):通过优化得到的嵌入向量(即训练得到的提示向量),模型能够根据任务特性学习如何引导其推理。这种方法使得模型通过学习提示来增强任务适应能力。
Prompt Tuning 的关键是在不修改原有预训练模型参数的情况下,通过调整提示(Prompt)的方式,帮助模型进行快速的任务适应。该方法特别适用于 零样本学习(Zero-shot Learning) 或 少样本学习(Few-shot Learning),能够显著提高效率,减少计算资源消耗。
二、P-Tuning V1
P-Tuning V1 是 Prompt Tuning 的一种扩展,它通过 将可训练的嵌入向量作为前缀(prefix)添加到输入文本中,进而帮助模型进行任务适配。
核心思想:
-
在每个输入文本前面加入一组可训练的嵌入向量,这些向量的作用是引导模型学习特定任务的特征。
-
P-Tuning V1 将这些嵌入向量直接作为“前缀”,与实际输入一起传递给模型。这些向量在训练过程中被优化,模型利用这些向量来理解任务的需求。
优点:
-
只需微调少量的参数(即软提示向量),无需调整模型的主干参数。
-
不需要手动设计任务提示,嵌入向量能够通过训练来学习和适应。
缺点:
-
这种方法仍然依赖人工设计输入提示的部分任务描述。
三、P-Tuning V2
P-Tuning V2 是对 P-Tuning V1 的改进,它进一步提升了 软提示的表示能力,通过 优化整个输入(包括嵌入向量和任务指令) 来增强模型的任务适应能力。
核心思想:
-
在 P-Tuning V2 中,除了可训练的提示嵌入向量外,任务指令本身也可以被优化。这意味着 P-Tuning V2 不仅优化了提示向量,还可以通过训练来生成或调整任务说明文本。
-
与 P-Tuning V1 相比,P-Tuning V2 允许任务指令本身成为模型的一部分进行微调,使得整个任务上下文在训练过程中更加灵活。
优点:
-
通过优化任务指令,P-Tuning V2 可以使得模型更加精准地理解任务要求。
-
能够自适应地调整任务描述,不仅限于通过简单的提示引导。
缺点:
-
训练过程中涉及更多的参数优化,相较于 P-Tuning V1 可能需要更多的计算资源。
-
需要更多的调参来找到最合适的任务描述。
四、P-Tuning V1 和 V2 的核心区别和联系
特性 | P-Tuning V1 | P-Tuning V2 |
---|---|---|
优化目标 | 仅优化输入提示的嵌入向量(软提示) | 优化输入提示向量以及任务描述文本(软提示 + 任务描述) |
任务适配方式 | 通过前缀嵌入向量调整输入文本的上下文 | 通过训练优化任务指令文本和前缀向量,共同适配任务 |
微调参数 | 仅微调提示向量(较少的参数) | 微调提示向量和任务指令(相对更多的参数) |
适用场景 | 适用于任务指令已经明确,且任务描述较为简单的情况 | 适用于任务描述需要更复杂调整的情况 |
灵活性 | 灵活性较低,任务描述较为固定 | 灵活性更高,任务描述也可以被优化 |
五、总结
-
Prompt Tuning 是一种非常高效的模型微调方法,通过优化提示向量来适应不同的任务,极大地减少了需要训练的参数,适用于资源受限的场景。
-
P-Tuning V1 主要通过引入软提示向量来优化任务适配,减少了计算成本,同时保持了任务适应的能力。
-
P-Tuning V2 是对 P-Tuning V1 的改进,它不仅优化软提示向量,还允许任务描述本身进行训练,从而提升了模型对任务的理解和适应能力,增加了灵活性和准确性。
这三种方法都基于相同的核心思想——通过优化输入的提示(或任务描述)来高效地适应任务,但 P-Tuning V2 在灵活性和表现上更进一步,尤其适合那些需要灵活调整任务指令的应用场景。