#--------------------外部数据导入-----------------
'''
read_excel():导入 .xls 或 .xlsx文件主要使用 Pandas 的 read_excel函数,函数内直接给出.xls 或 .xlsx文件的路径即可,得到的是一个 DataFrame(二维数组)。
df.head(3):读取前3条数据,head()是默认读取前5条数据。
'''
import pandas as pd # 导入pandas模块
# 导入Excel文件
df = pd.read_excel('C:/Users/YJL/.spyder-py3/文件/employee.xlsx')
print(df.head(3)) # 读取前3条数据
#导入csv文件,并指定编码格式
#df = pd.read_csv('/home/qingjiao/Document/data/8_2/student.csv',encoding='UTF-8')
#print(df.head()) # 输出前5条数据(head()默认输出前五条数据 )
#导入txt文件
#导入txt 文本文件使用的也是read_csv()函数,只是需要加上参数sep='\t'
#sep='\t':sep参数的默认值为逗号,我们需要将它修改为我们 txt 文件的分隔符
df = pd.read_csv('C:/Users/YJL/.spyder-py3/文件/123.txt',sep='\t', encoding='UTF-8')
print(df.head()) # 输出前5条数据
# 导入HTML网页,经观察发现所需表格是网页中的第1个表格,故为[0]
df = pd.read_html('http://www.air-level.com/air/beijing/', encoding='utf-8')[0]
print(df.head()) # 输出前5条数据
#--------------------数据导出-----------------
df = pd.DataFrame({
'编号': ['mr001', 'mr002', 'mr003'],
'语文': [110, 105, 109],
'数学': [105, 88, 120],
'英语': [99, 115, 130]}) # 创建DataFrame对象
df.to_excel('C:/Users/YJL/.spyder-py3/文件/score.xlsx') # 将数据导出为Excel文件