题解——汉明距离

这篇博客介绍了汉明距离的概念,即两个整数在二进制表示下不同位的数目。文章给出了两种解题思路:一种是直接转换为二进制并逐位比较,另一种是利用异或运算和内置计数函数。作者讨论了每种方法的实现细节,并强调了简化代码的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。

给你两个整数 x 和 y,计算并返回它们之间的汉明距离。

示例 1:

输入:x = 1, y = 4
输出:2
解释:
1   (0 0 0 1)
4   (0 1 0 0)
       ↑   ↑
上面的箭头指出了对应二进制位不同的位置。
示例 2:

输入:x = 3, y = 1
输出:1

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/hamming-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

想要解这一题对初学者来说最直观的方法就是将给的每个数进行转化,转化成二位数字,存储到数组中。由于转化二进时高位在前低位在后,所以在比较是需要从数组的末尾往前比较,但两个数组的长度肯定是不相同的,所以在短的那个比较完后,长数组余下的每一位是1便加1,是0则不进行操作,显然这是很麻烦的,我们也可以设置两个足够长的数组并赋初值为0,这样就能让两个数组从头到尾进行比较。当然这种方法还有更简洁的写法,如下

int hammingDistance(int x, int y){
    int i=0;
    for(;x!=0||y!=0;)
    {
        if(x%2!=y%2)
        i++;
        x/=2;
        y/=2;
    }
    return i;
}

使用一个for循环,当x,y都为0是结束,为此循环进行以此判断,这个判断的意义就是x,y二进制的相同位是否相等,不相等那就计数一次,然后对x,y除以二以便于下次循环求二进制。

另一种方法就是不直接对x,y的二进制进行比较而是通过异或对两个数据进行合成,异或的意义就是当相同位相同时为0,不相同时为1;进行异或之后只需要记录数据中1的个数就能得到汉明距离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值