机器学习+城市规划第八期:地理加权规划类模型综述

机器学习+城市规划第八期:地理加权规划类模型综述

地理加权回归(Geographically Weighted Regression, GWR)是处理空间异质性问题的经典方法。近年来,研究者在其基础上发展了多个变种模型,以提高适用性和拟合精度,扩展其能力以处理不同类型的数据和复杂的空间关系。

GWR模型类别

🔹 1. GWR(标准模型)

  • 功能:估计回归系数在地理空间中的局部变异。
  • 核心思想:通过加权局部样本进行回归,权重根据空间距离调整。
  • 适用场景:初步探索空间非平稳性,变量对响应的空间变化。

🔹 2. RGWR / S-GWR(Robust GWR / Semi-parametric GWR) 鲁棒GWR /半参数GWR

  • 功能

    • RGWR:对异常值鲁棒,提高稳定性;
    • S-GWR:部分变量设定为全局(不随空间变化),部分为局部变量。
  • 适用场景

    • 存在异常点影响结果;
    • 某些解释变量不应随空间而变(如政策变量、固定地理特征);

🔹 3. MGWR(Multiscale GWR) 多尺度GWR

  • 功能:为每个解释变量分配不同的带宽,反映不同变量的空间尺度。

  • 优点:解决标准 GWR 所有变量共享带宽导致的信息损失问题。

  • 适用场景

    • 不同变量具有不同空间影响尺度;
    • 多尺度空间分析,城市研究、环境科学等。

🔹 4. GWGLM(Geographically Weighted Generalized Linear Model) 地理加权广义线性模型

  • 功能:扩展至广义线性模型框架,如二项/泊松回归。

  • 适用场景

    • 响应变量为非正态分布(如二分类、计数数据);
    • 例如:疾病发生率、交通事故数等。

🔹 5. GWEN(Geographically Weighted Elastic Net) 地理加权弹性网

  • 功能:将 Lasso / Elastic Net 正则化引入 GWR;

  • 优点:处理高维数据、变量选择、避免过拟合。

  • 适用场景

    • 高维解释变量;
    • 变量筛选需求强烈的空间建模场景。

🔹 6. Bayesian GWR 贝叶斯GWR

  • 功能:将 GWR 融入贝叶斯框架,输出系数的后验分布

  • 优势:结果具备不确定性量化能力,可用于决策支持。

  • 适用场景

    • 需要统计置信区间;
    • 空间建模需兼顾不确定性(环境评估、生态风险等)。

🔹 7. Temporal GWR(TGWR) / ST-GWR(Spatiotemporal GWR) 时间GWR/时空GWR

  • 功能:结合空间与时间加权,估计时空变异的回归关系。

  • 适用场景

    • 空间影响随时间动态变化;
    • 如空气污染对健康的影响在不同季节或年份有差异。

🔹 8. GWR with Spatial Lag / Spatial Error(空间回归增强 GWR)

  • 功能

    • 考虑空间滞后或空间误差项;
    • 综合 GWR 与 SAR(空间自回归)模型。
  • 适用场景

    • 响应变量之间存在空间自相关;
    • 城市经济增长、房价等空间联动强的数据。

🔹 9. GWR for Panel Data(面板数据 GWR)

  • 功能:扩展 GWR 至多期空间面板数据;

  • 适用场景

    • 多时点、多空间单元数据;
    • 例如城市气候变化的年度分析、长期经济趋势。

🔹 10. Functional GWR(FGWR) 功能GWR

  • 功能:适应解释变量为函数型数据,如时间序列曲线;

  • 适用场景

    • 解释变量是时间曲线、遥感光谱等;
    • 如 NDVI 曲线对农业产量的空间异质影响。

总结对照表:

模型名称特点/功能适用场景
GWR局部回归基础空间异质性探索
S-GWR / RGWR半参数回归 / 鲁棒回归固定变量处理 / 异常值影响较大
MGWR多尺度建模各变量空间影响范围不同
GWGLM广义线性扩展非正态响应变量
GWEN正则化+变量选择高维建模、选择变量
Bayesian GWR不确定性分析决策分析需置信度
ST-GWR时空建模动态时空变化过程
GWR + SAR/SEM考虑空间误差/滞后项自相关显著问题
Panel GWR面板数据处理多期空间分析
FGWR函数型变量建模遥感、连续时间特征

针对城市规划学科的任务选择建议

城市规划领域具有高度的空间异质性、多尺度变量、多源数据、时空动态性等特点。因此,选择适合的地理加权回归(GWR)模型应考虑:

  • 变量类型(如土地利用、人口密度、交通设施等)
  • 数据时间维度(是否跨年、跨季)
  • 是否涉及空间联动或相互影响
  • 是否有异常值或高维变量

✅ 研究问题对模型选择参考:

模型名称推荐指数适用原因 / 场景举例
MGWR⭐⭐⭐⭐⭐城市中变量尺度差异大(如建筑密度 vs. 社区设施)
→ 多尺度建模更真实
ST-GWR⭐⭐⭐⭐城市更新、交通演化、时序土地使用等 → 需处理时空异质性
S-GWR⭐⭐⭐⭐城市中有些变量为固定(如政策区划),有些变量应局部处理(如设施密度)
Bayesian GWR⭐⭐⭐适用于规划影响评估、风险管理(提供置信区间)
GWR + SAR⭐⭐⭐房价、土地价值等易受邻近区域影响,考虑空间滞后性更准确
GWEN⭐⭐如果你变量很多(如几十种城市要素),可用来做变量选择
GWGLM⭐⭐如果你的响应变量是分类变量(如是否有交通拥堵),使用广义模型

✅ 场景对模型选择参考:

城市规划研究内容推荐模型原因
城市热岛影响因素分析MGWR, ST-GWR空间影响尺度不同且有时间变化
土地利用对房价影响MGWR, GWR+SAR房价有空间自相关,不同变量尺度差异大
设施可达性与居民满意度S-GWR, MGWR固定变量+局部变量组合较多
多年交通演化规律ST-GWR, Panel GWR跨年跨时段分析
绿色空间对幸福感的影响Bayesian GWR需要不确定性分析/政策支持参考
多维建成环境要素影响识别GWEN高维解释变量下的变量选择和压缩建模

✅ 综合推荐:

  1. MGWR(多尺度地理加权回归):最推荐,几乎适用于城市规划的大多数空间变量建模场景
  2. ST-GWR(时空地理加权回归):如果你有时间维度数据,优先考虑
  3. S-GWR(半参数地理加权回归):适合变量混合结构的规划场景
  4. Bayesian GWR(贝叶斯地理加权回归):用于政策分析和不确定性可视化支持

@原创声明:本教程由课题组内部教学使用,利用CSDN平台记录,不进行任何商业盈利。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值