机器学习+城市规划第八期:地理加权规划类模型综述
地理加权回归(Geographically Weighted Regression, GWR)是处理空间异质性问题的经典方法。近年来,研究者在其基础上发展了多个变种模型,以提高适用性和拟合精度,扩展其能力以处理不同类型的数据和复杂的空间关系。
GWR模型类别
🔹 1. GWR(标准模型)
- 功能:估计回归系数在地理空间中的局部变异。
- 核心思想:通过加权局部样本进行回归,权重根据空间距离调整。
- 适用场景:初步探索空间非平稳性,变量对响应的空间变化。
🔹 2. RGWR / S-GWR(Robust GWR / Semi-parametric GWR) 鲁棒GWR /半参数GWR
-
功能:
- RGWR:对异常值鲁棒,提高稳定性;
- S-GWR:部分变量设定为全局(不随空间变化),部分为局部变量。
-
适用场景:
- 存在异常点影响结果;
- 某些解释变量不应随空间而变(如政策变量、固定地理特征);
🔹 3. MGWR(Multiscale GWR) 多尺度GWR
-
功能:为每个解释变量分配不同的带宽,反映不同变量的空间尺度。
-
优点:解决标准 GWR 所有变量共享带宽导致的信息损失问题。
-
适用场景:
- 不同变量具有不同空间影响尺度;
- 多尺度空间分析,城市研究、环境科学等。
🔹 4. GWGLM(Geographically Weighted Generalized Linear Model) 地理加权广义线性模型
-
功能:扩展至广义线性模型框架,如二项/泊松回归。
-
适用场景:
- 响应变量为非正态分布(如二分类、计数数据);
- 例如:疾病发生率、交通事故数等。
🔹 5. GWEN(Geographically Weighted Elastic Net) 地理加权弹性网
-
功能:将 Lasso / Elastic Net 正则化引入 GWR;
-
优点:处理高维数据、变量选择、避免过拟合。
-
适用场景:
- 高维解释变量;
- 变量筛选需求强烈的空间建模场景。
🔹 6. Bayesian GWR 贝叶斯GWR
-
功能:将 GWR 融入贝叶斯框架,输出系数的后验分布;
-
优势:结果具备不确定性量化能力,可用于决策支持。
-
适用场景:
- 需要统计置信区间;
- 空间建模需兼顾不确定性(环境评估、生态风险等)。
🔹 7. Temporal GWR(TGWR) / ST-GWR(Spatiotemporal GWR) 时间GWR/时空GWR
-
功能:结合空间与时间加权,估计时空变异的回归关系。
-
适用场景:
- 空间影响随时间动态变化;
- 如空气污染对健康的影响在不同季节或年份有差异。
🔹 8. GWR with Spatial Lag / Spatial Error(空间回归增强 GWR)
-
功能:
- 考虑空间滞后或空间误差项;
- 综合 GWR 与 SAR(空间自回归)模型。
-
适用场景:
- 响应变量之间存在空间自相关;
- 城市经济增长、房价等空间联动强的数据。
🔹 9. GWR for Panel Data(面板数据 GWR)
-
功能:扩展 GWR 至多期空间面板数据;
-
适用场景:
- 多时点、多空间单元数据;
- 例如城市气候变化的年度分析、长期经济趋势。
🔹 10. Functional GWR(FGWR) 功能GWR
-
功能:适应解释变量为函数型数据,如时间序列曲线;
-
适用场景:
- 解释变量是时间曲线、遥感光谱等;
- 如 NDVI 曲线对农业产量的空间异质影响。
总结对照表:
模型名称 | 特点/功能 | 适用场景 |
---|---|---|
GWR | 局部回归 | 基础空间异质性探索 |
S-GWR / RGWR | 半参数回归 / 鲁棒回归 | 固定变量处理 / 异常值影响较大 |
MGWR | 多尺度建模 | 各变量空间影响范围不同 |
GWGLM | 广义线性扩展 | 非正态响应变量 |
GWEN | 正则化+变量选择 | 高维建模、选择变量 |
Bayesian GWR | 不确定性分析 | 决策分析需置信度 |
ST-GWR | 时空建模 | 动态时空变化过程 |
GWR + SAR/SEM | 考虑空间误差/滞后项 | 自相关显著问题 |
Panel GWR | 面板数据处理 | 多期空间分析 |
FGWR | 函数型变量建模 | 遥感、连续时间特征 |
针对城市规划学科的任务选择建议
城市规划领域具有高度的空间异质性、多尺度变量、多源数据、时空动态性等特点。因此,选择适合的地理加权回归(GWR)模型应考虑:
- 变量类型(如土地利用、人口密度、交通设施等)
- 数据时间维度(是否跨年、跨季)
- 是否涉及空间联动或相互影响
- 是否有异常值或高维变量
✅ 研究问题对模型选择参考:
模型名称 | 推荐指数 | 适用原因 / 场景举例 |
---|---|---|
MGWR | ⭐⭐⭐⭐⭐ | 城市中变量尺度差异大(如建筑密度 vs. 社区设施) → 多尺度建模更真实 |
ST-GWR | ⭐⭐⭐⭐ | 城市更新、交通演化、时序土地使用等 → 需处理时空异质性 |
S-GWR | ⭐⭐⭐⭐ | 城市中有些变量为固定(如政策区划),有些变量应局部处理(如设施密度) |
Bayesian GWR | ⭐⭐⭐ | 适用于规划影响评估、风险管理(提供置信区间) |
GWR + SAR | ⭐⭐⭐ | 房价、土地价值等易受邻近区域影响,考虑空间滞后性更准确 |
GWEN | ⭐⭐ | 如果你变量很多(如几十种城市要素),可用来做变量选择 |
GWGLM | ⭐⭐ | 如果你的响应变量是分类变量(如是否有交通拥堵),使用广义模型 |
✅ 场景对模型选择参考:
城市规划研究内容 | 推荐模型 | 原因 |
---|---|---|
城市热岛影响因素分析 | MGWR, ST-GWR | 空间影响尺度不同且有时间变化 |
土地利用对房价影响 | MGWR, GWR+SAR | 房价有空间自相关,不同变量尺度差异大 |
设施可达性与居民满意度 | S-GWR, MGWR | 固定变量+局部变量组合较多 |
多年交通演化规律 | ST-GWR, Panel GWR | 跨年跨时段分析 |
绿色空间对幸福感的影响 | Bayesian GWR | 需要不确定性分析/政策支持参考 |
多维建成环境要素影响识别 | GWEN | 高维解释变量下的变量选择和压缩建模 |
✅ 综合推荐:
- MGWR(多尺度地理加权回归):最推荐,几乎适用于城市规划的大多数空间变量建模场景
- ST-GWR(时空地理加权回归):如果你有时间维度数据,优先考虑
- S-GWR(半参数地理加权回归):适合变量混合结构的规划场景
- Bayesian GWR(贝叶斯地理加权回归):用于政策分析和不确定性可视化支持
@原创声明:本教程由课题组内部教学使用,利用CSDN平台记录,不进行任何商业盈利。