指派问题与匈牙利法讲解

文章介绍了指派问题的基本概念,即如何在n*n矩阵中选择n个元素使得和最小,以及问题的最优解性质。接着详细阐述了匈牙利算法的步骤,包括行和列归约、试指派、画盖0线和更新矩阵,以求得最小代价的分配方案。最后通过示例展示了算法的具体应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

指派问题概述:

实际中,会遇到这样的问题,有n项不同的任务,需要n个人分别完成其中的1项,每个人完成任务的时间不一样。于是就有一个问题,如何分配任务使得花费时间最少。

通俗来讲,就是n*n矩阵中,选取n个元素,每行每列各有1个元素,使得和最小。

如下图:

指派问题性质:

指派问题的最优解有这样一个性质,若从矩阵的一行(列)各元素中分别减去该行(列)的最小元素,得到归约矩阵,其最优解和原矩阵的最优解相同.

匈牙利法:

12

7

9

7

9

8

9

6

6

6

7

17

12

14

9

15

14

6

6

10

4

10

7

10

9

1.行归约:

每行元素减去该行的最小元素

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

2.列归约:

每列元素减去该列的最小元素

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

3.试指派:

(1)找到未被画线的含0元素最少的行列,即,遍历所有未被画线的0元素,看下该0元素所在的行列一共有多少个0,最终选取最少个数的那个0元素。

(2)找到该行列中未被画线的0元素,这就是一个独立0元素。对该0元素所在行和列画线。

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

(3)暂时不看被线覆盖的元素,重复(1)(2)直到没有线可以画。

(4)根据(2)找到的0元素个数判断,找到n个独立0元素则Success,小于n个则Fail.(本例子中,n=5,可以看到,第一次试指派之后,独立0元素有4个,不符合)

4.画盖0线:

目标:做最少的直线数覆盖所有0元素,直线数就是独立0元素的个数。

注意:这跟3的线不同;不能用贪心法去画线,比如

1 0 0

1 1 0

1 0 1

若先画横的,则得画3条线,实际只需2条;若先画竖的,将矩阵转置后同理。

步骤3得出的独立0元素的位置

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

(1)对没有独立0元素的行打勾、

(2)对打勾的行所含0元素的列打勾

(3)对所有打勾的列中所含独立0元素的行打勾

(4)重复(2)(3)直到没有不能再打勾

(5)对打勾的列和没有打勾的行画画线,这就是最小盖0线。

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

5

0

2

0

2

2

3

0

0

0

0

10

5

7

2

9

8

0

0

4

0

6

3

6

5

5.更新矩阵:

(1)对没有被线划到的数中,找到最小的数。

(2)对没有被线划到的数中,减去最小的数。

(3)对被2条线划到的数中,加上最小的数。

7

0

2

0

2

4

3

0

0

0

0

8

3

5

0

11

8

0

0

4

0

4

1

4

3

6.重复3-5直到成功。

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

0

sum = 7+6+9+6+4 = 32

匈牙利算法(Hungarian Algorithm)

分配问题:假设有N个人N个任务,每个任务可以分配给任意不同的人,不同的人对不同的任务需要花费的代价也不相同,那么如何分配才能使花费总代价最少。假设现在有三个任务,三个人,每个人完成每个任务的代价矩阵如下(代价可以是时间或者金钱等):

怎么才能找到一个分配方法使得任务花费代价最小呢?

匈牙利算法就是用来解决分配问题的一种方法,它基于理论:如果代价矩阵的某一行或某一列同时加或减某个数,则这个新的代价矩阵的最优分配任然是原代价矩阵的最优分配。

算法步骤(假设矩阵为NxN方阵):

1.对于矩阵的每一行,减去其中最小的元素

2.对于矩阵的每一列,减去其中最小的元素

3.用最少的水平线或垂直线覆盖矩阵中所有的0

4.如果线的数量等于N,则找到了最优分配,算法结束,否则进入步骤5

5.找到没有被任何线覆盖的最小元素,每个没被线覆盖的行减去这个元素,个被线覆盖的列加上这个元素,返回步骤3

继续拿上面的例子演示:

1.每一行减去其最小元素得到:

2.每一列减去其最小元素得到:

3.用最少的水平线或者垂直线覆盖所有的0得到:

4.线的数量为2,小于3,进入第五步:

5.现在没被覆盖的最小元素是5,没被覆盖的行(第一和第二行)减去5,得到:

6.被覆盖的列(第一列)加上5,得到:

7.回到步骤3,用最少的线覆盖所有0:

8.线的数量=3,算法结束,很显然,第一个任务给第二人,第二个任务给第一人,第三个任务给第三人,总代价最小(0+0+0):

9.所以原矩阵最小代价为(40+20+25=85):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值